The extents of mitral leaflet opening and closure are determined by left ventricular systolic function

S Kaul

The extent of opening of the mitral leaflets in diastole and their degree of closure during systole are mediated either indirectly or directly through the force of left ventricular systole. Therefore measures of incomplete opening or incomplete closure both reflect left ventricular systolic function.

In order to appreciate the spatiotemporal relation between the mitral leaflets and mitral annular plane during the cardiac cycle, one has to begin with the “neutral” position of the mitral leaflets in relation to the mitral annular plane. This can be defined as the position of the mitral leaflets when there is no pressure difference between the left atrium and left ventricle. If the annulus were a Euclidean plane, the neutral position of the leaflets would be in the plane of the annulus (fig 1A). Because the mitral annulus is saddle shaped, the neutral position of the mitral leaflets is not in the Euclidean plane but is caudal to it (fig 1B). This position results from the tension on the leaflets by the saddle shaped annulus which affords them a spring-like quality so that a greater force is required to move them cephalad towards the mitral annular plane than to move them caudally further into the left ventricular (LV) cavity (fig 1B).

NORMAL LV FUNCTION

Let us begin at this neutral position at the time of left atrial (LA)–LV pressure crossover when the mitral valve opens (Co in fig 2, with the corresponding two dimensional echocardiographic orientation in fig 3). The mitral leaflets are pulled into the LV due to the rapidly changing LA–LV pressure gradient that occurs early in diastole (O in fig 2, with the corresponding two dimensional echocardiographic orientation in fig 3). For any given LA pressure and LV afterload, the rate at which the diastolic LA–LV gradient increases depends on the rate of LV elastic recoil, which in turn is determined by LV systolic function: the worse the LV systolic function, the slower the rate of LV elastic recoil; the slower the rate of LV elastic recoil, the slower the rate of rise of LV elastic recoil. When the rate of rise of the diastolic LA–LV pressure gradient is rapid, the degree of mitral leaflet opening is greater and the degree of E point septal separation (EPSS) is smaller. Conversely, a slow rate of rise in this gradient causes a smaller degree of mitral leaflet opening and a greater degree of EPSS. It is not the absolute change in pressure that matters but the rate of rise of pressure.

After the leaflets have attained their maximal opening they start drifting cephalad, even before the occurrence of peak forward mitral flow, and the leaflet tips coapt in the neutral position caudal to the annulus. The leaflets assume their neutral position because the LA–LV gradient is zero or minimal during atrial diastasis (d in fig 2, with the corresponding two dimensional echocardiographic orientation in fig 3). The leaflets coapt at this position but do not “close”.

Once LV systole starts and the systolic LV–LA pressure gradient increases above a critical level, it overcomes the spring-like tension in the mitral leaflets and pushes them towards the mitral annular plane, thus closing them (Cl’ in fig 2, with the corresponding two dimensional echocardiographic orientation in fig 3). The leaflets coapt at this position because the LA–LV pressure gradient approaches zero towards the end of atrial systole, the leaflets again drift towards their neutral position (Co’ in fig 2, with the corresponding two dimensional echocardiographic orientation in fig 3). The leaflets coapt at this position but do not “close”.

LV SYSTOLIC DYSFUNCTION

In the presence of LV systolic dysfunction, the rate of rise of the systolic LV–LA pressure gradient determines the degree to which the mitral leaflets close in systole. The slower this rate of rise of pressure, the greater the distance between the mitral leaflet coaptation point and the mitral annular plane in systole (incomplete mitral leaflet closure (IMLC)). Again, it is the

Abbreviations: EPSS, E point septal separation; IMLC, incomplete mitral leaflet closure; LA, left atrium; LV, left ventricle
Effect of the shape of the mitral annulus on the neutral position of the mitral leaflets. If the annulus is in the Euclidean plane, the leaflet coaptation plane will remain within that same plane (A). When the annulus is saddle shaped, the leaflet coaptation plane will move caudally (B). A greater force is required to move the leaflets cephalad towards the mitral annular plane (large arrow) than to move them caudally further into the left-ventricular cavity (small arrow). AML, anterior mitral leaflet; Ao, aorta; LA, left atrium; LV, left ventricle; PML, posterior mitral leaflet. Reproduced from Dent et al with permission of the American Physiological Society.

Figure 2 Haemodynamics and mitral valve flow during the cardiac cycle. AoP, aortic pressure; ICT, isometric contraction time; IRT, isovolumic relaxation time; LAP, left atrial pressure; LVP, left ventricular pressure; Cl, Co, O, d, O', Co' and Cl' are defined in the text.

ROLE OF PAPILLARY MUSCLES

The degree of IMLC has also been measured in the clinical setting. It was initially felt that the degree of IMLC noted in ischemic heart disease occurs because of dyskinesia of the LV free wall in patients with myocardial infarction, which pulls the papillary muscle outward resulting in a caudal coaptation of the mitral leaflets in systole. It has since been demonstrated that this phenomenon occurs in non-ischaemic LV dysfunction as well. It has been shown that when papillary muscle function is kept normal (by perfusing it selectively with blood), the degree of IMLC correlates with the degree of LV systolic dysfunction. The main role of the papillary muscles and the chordae tendinae is prevention of mitral valve prolapse in systole. Once the systolic LV–LA pressure gradient exceeds the spring-like tension of the leaflets and pushes them towards the mitral annular plane, movement of the leaflets cephalad to this plane is prevented by these structures. It may not even be necessary for the papillary muscles to shorten during systole in order to prevent prolapse of the mitral leaflets. It has been reported that the distance between the mitral leaflet tips and the LV apex remains constant throughout the cardiac cycle, suggesting that the papillary muscles contract isometrically. It has also been shown that while ischaemia of one or both papillary muscles results in their lack of thickening, it does not result in prolapse. Ischaemia of the papillary muscles does not result in greater degree of IMLC either. The degree of IMLC does not increase during lack of thickening of the papillary muscles and the immediately adjacent LV wall.

Figure 3 Positions of the mitral leaflets in relation to the annular plane at different times of the cardiac cycle. Cl, Co, O, d, O', Co' and Cl' are defined in the text.
The diastolic LA–LV pressure gradient influences the magnitude of forward mitral valve flow in the same manner in which it influences the degree of mitral leaflet opening (Fig 2), but the magnitude of forward mitral flow is not responsible for mitral leaflet opening. When forward mitral valve flow is increased during severe LV dysfunction by transiently increasing LA pressure, the degree of IMLC remains unchanged. Adequate mitral valve opening is seen despite no flow across the mitral valve when the pulmonary veins are suddenly occluded in a beating canine heart without changing LV function. Therefore, the reduction of IMLC during dobutamine administration noted by Karagiannis and colleagues in a recent issue of Heart is due to the direct effect of the drug on LV systolic function, rather than its secondary effect on cardiac output.

A word of caution on measuring LV systolic function using LV ejection fraction. As a measure of LV systolic function, this parameter is as misleading as it is easy to measure. It is highly load dependent. LV end systolic dimensions, LV peak systolic wall stress, and newer tissue Doppler derived parameters more accurately reflect LV systolic function and should be measured more frequently in echocardiographic laboratories, particularly when LV systolic function is a major determinant of an issue under study.

CONCLUSION

Both the extents of opening of the mitral leaflets in diastole and their degree of closure during systole are mediated either indirectly (opening) or directly (closure) through the force of LV systole. Therefore measures of incomplete opening (increased EPSS) or incomplete closure (IMLC) both reflect LV systolic function. IMLC also results in mitral regurgitation with a central jet, the degree of which is roughly proportional to the degree of IMLC. In ischaemic mitral regurgitation associated with reduced global LV systolic function but viable myocardium, and IMLC with intact mitral leaflets, a mitral ring in conjunction with revascularisation is all that is necessary to assure subsequent reduction in the degree of mitral regurgitation in association with improvement in LV systolic function.

ACKNOWLEDGEMENTS

The author thanks Kevin Wei, MD for executing the artwork.

REFERENCES


ELECTRONIC PAGES

Heart Online case reports: www.heartjnl.com

The follow electronic only articles are published in conjunction with this issue of Heart.
The extents of mitral leaflet opening and closure are determined by left ventricular systolic function
S Kaul

Heart 2004 90: 126-128
doi: 10.1136/hrt.2003.014373

Updated information and services can be found at:
http://heart.bmj.com/content/90/2/126

These include:

References
This article cites 17 articles, 9 of which you can access for free at:
http://heart.bmj.com/content/90/2/126#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Hypertension (3006)
Clinical diagnostic tests (4779)
Echocardiography (2127)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/