A novel model of in-stent restenosis: rat aortic stenting
H C Lowe, B James, L M Khachigian

RESULTS

Twenty two stents were deployed in 22 rats, and successfully harvested and examined at the following time points: 14 days (n = 3), 1 month (n = 9), 2 months (n = 6). In an additional four animals, one stent had undergone thrombosis, and three stents were poorly deployed making evaluation impractical.

A time dependent concentric area of ISR was observed in all animals (table 1, figs 1 and 2). This was evident by 14 days, though at this early time point, the zone of ISR was largely localised immediately adjacent to the stent struts. At one month, a well defined concentric ring of ISR was present in all animals, with an N/M ratio of 0.76 (0.17). At two months, this was still evident, though there was a trend toward regression in the degree of ISR.

DISCUSSION

This initial series represents the first description of a model of ISR following overstretch stent injury to the rat aorta. Anecdotal reports have previously suggested that percutaneous stent delivery to the rat aorta is feasible and results in focal, stent strut related ISR at 14 days, and that following stent placement using an open surgical approach to the lower abdominal aorta, a concentric neointima is present at 56 days. This report suggests that the present methodology provides a reliable and reproducible model of ISR.

A number of characteristics of this proposed model are noteworthy. Firstly, that while the absolute area of ISR formation is modest, the N/M ratio is robust, and significant enough to provide a baseline for the evaluation of treatment to reduce ISR. The N/M ratio of 0.76 compares to that of 0.8–2.0 following stenting of the rabbit aorta. Secondly, this degree of neointimal formation is achieved with only a modest degree of stent strut induced injury. Injury was for the most part created by medial compression without laceration, as reflected in the low mean injury scores (table 1). Based on other animal models, it is likely that a greater degree of injury would result in a more profound degree of neointima, perhaps further adding to the utility of this model. Thirdly, the model provides the suggestion of

<table>
<thead>
<tr>
<th>Table 1: Histologic evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Neointima</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Neointima/media ratio</td>
</tr>
<tr>
<td>Schwartz score*</td>
</tr>
<tr>
<td>Gunn score*</td>
</tr>
</tbody>
</table>

Data presented as mean (SE). *p < 0.05, significant difference compared to 14 days.
regression of ISR between 1–2 months. Regression of ISR has been observed in humans between six months and three years following stenting; proposed mechanisms include a maturation of extracellular matrix, with conversion of proteoglycan to elastin, and smooth muscle cell apoptosis. A greater understanding of the mechanisms of restenosis regression would clearly be of immense clinical value.

Two other rat models of ISR have been recently described, both employing stents deployed on 1.5 mm diameter balloons in the common carotid artery. The induced ISR is maximal at 21–28 days, with regression at 60 days. However, stenting the rat common carotid artery is technically demanding, and despite a learning curve, these studies were limited by animal mortality of up to 20%, and stent thrombosis rates of 10–26%, which may provide ethical and practical limitations to their widespread use.

The technique described here has some limitations. Firstly, the degree of aortic injury is not precisely quantitated, and the neointima induced is relatively modest. The rat aorta is measured on fixed sections between 2.7–3.0 mm in diameter.

Figure 1 In-stent restenosis (ISR) following rat aortic stenting. Neointima/media ratios, expressed as mean (SE) at time points of 14 days, one month, and two months. *Significant difference compared to 14 days (p < 0.05, Wilcoxon signed rank test for unpaired data).

Figure 2 Histology of ISR following rat aortic stenting. (A) section at 14 days; (B) inset from A; (C) section at one month; (D) inset from C; (E) section at two months; (F) inset from E. M, media; N, neointima; St, stent strut.
Hence a 3.0 mm balloon is dilated to 16 atmospheres to achieve a final balloon to vessel ratio of 1.1–1.2:1. This is not quantified individually. It is possible that direct measurement of the aorta, perhaps using intravascular ultrasound or echocardiography, may allow this. Secondly, present surgical technique does not readily allow the more bulky 3.0 mm pre-mounted stent to be used without frequent trauma to the common carotid artery. The lower profile 2.0 mm mounted stent to be used without frequent trauma to the aorta, perhaps using intravascular ultrasound or the subcommitee on animal, cellular and molecular models of thrombosis and haemostasis. Investigations are also underway to establish whether more profound degrees of injury are associated with greater degrees of ISR.

Thus, while investigations are ongoing, this report provides the first evidence of reliable and reproducible ISR formation following stenting of the rat aorta. This novel, straightforward model should facilitate rapid and efficient assessment of stent bound local and systemically delivered potential inhibitors of restenosis, and should assist researchers in this rapidly expanding field.

ACKNOWLEDGEMENTS

HCL is a Clinical Research Fellow of the NHMRC of Australia. The authors thank David Tanous for expert technical assistance.

Authors’ affiliations

H C Lowe*, B James, L M Khachigian, Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia

*Also at Cardiology Department, Concord Repatriation General Hospital, University of Sydney

REFERENCES

IMAGES IN CARDIOLOGY

Magnetic resonance imaging follow up of total cavopulmonary connection

A 4 year old boy with double inlet left ventricle, tricuspid atresia, and malposition of the great arteries had initially undergone banding of the pulmonary artery. At the age of 5 months a bidirectional Glenn anastomosis was placed. Finally, definite single ventricle palliation was achieved by creation of a fenestrated extracardiac total cavopulmonary connection (TCPC). At the same time, the stenotic left pulmonary artery was augmented by means of a patch plasty. Low dose prophylactic anticoagulation was started. Four months later, pulse oximetry readings had dropped to about 5% below his baseline. The chest x ray revealed preferential pulmonary blood flow to the right. While neither the TCPC baffle nor the branch pulmonary arteries were sufficiently seen by echocardiography, magnetic resonance imaging clearly visualised the intra- and extracardiac anatomy. The extracardiac baffle was unobstructed as was the right pulmonary artery. However, the left pulmonary artery showed a severe long segment narrowing (panel). An additional patch was placed to augment the vessel size.

C Lilje
C R Habermann
J Weil
clilje@tulane.edu

www.heartjnl.com
A novel model of in-stent restenosis: rat aortic stenting

H C Lowe, B James and L M Khachigian

Heart 2005 91: 393-395
doi: 10.1136/hrt.2003.028076

Updated information and services can be found at:
http://heart.bmj.com/content/91/3/393

These include:

References
This article cites 14 articles, 3 of which you can access for free at:
http://heart.bmj.com/content/91/3/393#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Interventional cardiology (2933)
Clinical diagnostic tests (4779)
Diabetes (842)
Venous thromboembolism (495)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/