Improving secondary prevention in coronary bypass patients: closing the audit loop

T N Martin, R J Irving, M Sutherland, K Sutherland, P Bloomfield

Objectives: To complete the audit loop assessing secondary preventative care of patients who had coronary artery bypass graft (CABG) surgery.

Design: Two separate surveys of 1000 patients who had had CABG at the regional centre between 1988 and 1997, selected in 1998 and 2001. A single page questionnaire was sent to the patient’s general practitioner.

Interventions: A list was sent to each general practice in Lothian, Scotland, of their patients on the CABG database and the results of the original survey. Lothian Health organised a project to contact and recall patients with cardiac disease in each practice. Sixty five (of 128) practices participated.

Main outcome measures: Blood pressure, smoking status, serum cholesterol concentrations, and prescription of lipid lowering drugs and aspirin.

Results: 918 questionnaires (92%) in the second survey were returned describing 875 patients: 151 (17%) patients smoked and 752 patients (86%) took aspirin. Mean (SD) systolic blood pressure was lower in the second survey (142.5 (19.2) mm Hg in the first survey v 139.4 (19.1) mm Hg, p < 0.005). In our first survey 34% of patients had cholesterol concentrations less than target (5.2 mmol/l). This increased from 12% of patients operated on in 1988 to 50% of patients operated on in 1997 (Spearman rank correlation 0.77, p < 0.01). In the second survey this proportion had risen to 65% and the correlation with year of operation was abolished.

Conclusions: By closing the audit loop, substantial improvements were shown in the management of risk factors in patients who have had coronary artery surgery in Lothian.
Table 1 Recording of risk factors by general practitioners in two surveys of 1000 patients undergoing CABG randomly selected from the cardiac surgery database

<table>
<thead>
<tr>
<th>Survey</th>
<th>1998</th>
<th>2001</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed questionnaire</td>
<td>761 (76%)</td>
<td>918 (92%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Alive</td>
<td>563 (74%)</td>
<td>875 (95%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>65 (12%)</td>
<td>151 (17%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Former smoker</td>
<td>210 (37%)</td>
<td>288 (33%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>223 (40%)</td>
<td>381 (44%)</td>
<td>0.02</td>
</tr>
<tr>
<td>GP unaware of smoking status</td>
<td>65 (12%)</td>
<td>57 (7%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Aspirin use</td>
<td>456 (81%)</td>
<td>747 (85%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Blood pressure recording</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood pressure recorded</td>
<td>552 (98%)</td>
<td>864 (99%)</td>
<td>0.93</td>
</tr>
<tr>
<td>Most recent record (days)</td>
<td>305 (460)</td>
<td>251 (333)</td>
<td>0.02</td>
</tr>
<tr>
<td>Systolic [mm Hg]</td>
<td>142.5 (19.2)</td>
<td>139.4 (19.1)</td>
<td>0.005</td>
</tr>
<tr>
<td>Diastolic [mm Hg]</td>
<td>80.6 (9.3)</td>
<td>77.7 (10.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Treated systolic > 140 mm Hg</td>
<td>260 (46%)</td>
<td>350 (40%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Untreated systolic > 140 mm Hg</td>
<td>17 (3)</td>
<td>14 (1.6)</td>
<td>0.8</td>
</tr>
<tr>
<td>Cholesterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recorded</td>
<td>472 (84%)</td>
<td>817 (89%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Most recent record (days)</td>
<td>491 (601)</td>
<td>427 (700)</td>
<td>0.001</td>
</tr>
<tr>
<td>Drug prescribed</td>
<td>279 (50%)</td>
<td>615 (70%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Treated to target</td>
<td>191 (34%)</td>
<td>572 (65%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Untreated and below target</td>
<td>130 (23%)</td>
<td>63 (7%)</td>
<td>-0.001</td>
</tr>
<tr>
<td>Concentrations [mmol/l]</td>
<td>5.46 (1.07)</td>
<td>4.82 (0.90)</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

Data are mean (SD) or number of patients (%).
*1998 versus 2001 audit data.
CABG, coronary artery bypass graft; GP, general practitioner.

Statistical analysis
Continuously distributed variables are expressed as mean (SD) and comparisons were made with t tests. Categorical data were analysed with χ^2. All statistical tests were performed with Statistica 6.0 (Statsoft Inc, Tulsa, Oklahoma, USA). A probability value of $p < 0.05$ was considered significant.

RESULTS
Both audits had excellent response rates. There were small but significant changes in rates of aspirin use, smoking status, and blood pressure control (table 1). Recorded systolic and diastolic blood pressure were lower in the second audit than in the first. Few patients who had systolic pressure measured at greater than 160 mm Hg were not prescribed drugs in both audits. In the 1998 audit 46% (260 patients) had systolic blood pressure exceeding the more modern target of 140 mm Hg compared with 40% (350 patients, $p = 0.15$) in the second audit.

Cholesterol treatment
Between the two audits the contemporaneous target concentration for treatment was reduced from 5.2 mmol/l to 5.0 mmol/l; for ease of comparison we have used the higher figure but results were comparable whichever target figure was used.

Cholesterol concentrations were lower and had been measured more recently in the second audit. Cholesterol lowering treatment was prescribed to more patients, more patients were treated to target, and fewer patients had untreated cholesterol concentrations that were greater than the threshold for treatment (table 1).

In the first audit in 1998 only 34% of patients had a cholesterol concentration less than the contemporaneous target of 5.2 mmol/l. This proportion was significantly lower for patients who had had CABG several years previously: 12% for patients who had their CABG in 1988 compared with 50% of those who had their CABG in 1997 ($p < 0.01$) (fig 1). In the second audit the overall proportion achieving this target had risen to 65% (572 patients) and we found no difference in the proportion of patients achieving this target according to the year of their operation (fig 2).

Practices participating in Lothian general practice audit project compared with usual care in 2001 audit
Sixty five practices of a total of 128 took part in the project sponsored by Lothian GPAC to call and recall patients with ischaemic heart disease. We found no difference in prescription of aspirin or in smoking between patients attending practices that had participated in the GPAC project and those that had not. Blood pressure had been recorded more recently in the GPAC project practices. Systolic blood pressure was lower in the GPAC practices but diastolic blood pressure was not measurably different between the groups. Cholesterol had been measured more recently in practices that had taken part in the GPAC project and recorded cholesterol concentrations were lower (table 2). Cholesterol concentrations in patients taking cholesterol lowering treatment were significantly lower in the GPAC project (4.67 v 4.88 mmol/l, $p = 0.002$) implying that stronger doses of cholesterol lowering drugs were used. However, the proportion of patients with untreated cholesterol concentrations higher than the 2001 target concentration of 5.0 mmol/l was no different between practices that had or had not participated in the GPAC project (12% v 9.3%, $p = 0.18$).

DISCUSSION
We have shown that the management of risk factors in patients who had had coronary artery surgery in Lothian improved substantially over a three year period. More patients have had their risk factors measured and appropriate treatment instituted and monitored. It is likely that the improvement in blood pressure and cholesterol management between the 1998 and 2001 CABG audits was due in large part to the direct notification to general practitioners of individual patients who had had CABG and who would benefit from secondary prevention. Treatment with lipid lowering drugs clearly improved in patients who had had their coronary surgery before the publication of landmark trials of statins suggesting that this forgotten population had been identified and appropriately treated. More than 70% of general practitioners responded that notifying them of their own individual patients who had had CABG was helpful; many of the remainder stated they had identified the patients by their own internal audit. Hospital databases of patients who have had CABG, myocardial infarction, or percutaneous coronary intervention are widespread and may easily be used to identify patients no longer attending hospital follow up but who would benefit from secondary prevention such as cholesterol reduction and blood pressure treatment.

These results compare favourably with other recent studies. EUROASPIRE (European action on secondary prevention through intervention to reduce events) II showed an improvement in cholesterol concentrations in a population with coronary disease, but the degree of change was smaller.9,10 Brady and colleagues11 recently presented a large scale follow up survey (1999–2002) of 11 996 patients with coronary disease, but the degree of change was smaller.7,18 These results are consistent with the findings from this study and further support the potential for improvement in lipid management post CABG.
was just as low. Therefore, despite the increase in awareness
of the benefits of statins, one cannot assume that all patients
who merit treatment are receiving it, and interventions to
increase the proportion who do are worthwhile.

The two interventions described in this paper took place
over the same time period and it is difficult to distinguish the
impact of each. We found that patients of practices that had
participated in the Lothian GPAC project were likely to have
had their cholesterol and blood pressure measured more
recently and levels of these risk factors were both signifi-
cantly lower. This suggests an additional benefit of the GPAC
audit.

While our audit has shown an improvement in manage-
ment of risk factors the results are still far from ideal. We
found that 30% of patients who had had CABG surgery were
not receiving a statin. The heart protection study and other trials""" have shown that all patients with coronary heart
disease benefit from treatment with statins. Furthermore,
patients who have undergone CABG have significantly lower
rates of graft occlusion and further coronary events if treated
with aggressive cholesterol reduction with high doses of
statins compared with treatment to conventional target
concentrations.""" The results of our audit show that too few
patients who have had CABG surgery are receiving statins
and it is probable that many are receiving too low a dose.

Although we did not obtain data on dosage of statins
prescribed, the proportion of patients with a cholesterol
concentration greater than 5.2 mmol/l and treated with
statins suggests that inadequate doses of statins are
commonly used. Lothian guidelines on the management of
lipid disorders and the Lothian formulary both recommend
starting treatment with the lowest dose of statin and titrating
to target cholesterol concentrations. Lothian and national
guidelines do not identify patients who have undergone
CABG surgery as potentially benefiting from higher doses of
statins. Postal questionnaires cannot assess how many patients
take their medication. It may well be that some of the
patients who are prescribed cholesterol lowering drugs but
remain above their targets take less of their medication than
patients who are below their targets. It is worth noting that
the heart protection study excluded patients who were
assessed as not likely to comply after an 8–10 week run-in
phase.""" Twenty six per cent of patients eligible for the trial
were excluded. This large number of patients who keep their
own counsel on the value of medication that alters risk and
not symptoms may ultimately limit the scope of interventions
to improve rates of treatment of cholesterol.

In closing the audit loop we have shown that secondary
prevention for patients who have undergone CABG surgery
can be improved. There may be diminishing returns from
prescribing every drug that offers theoretical risk reduction: a

Figure 1 Histogram illustrating the management of serum cholesterol
according to year of operation as determined by the 1998 audit. The
proportion of patients with a recorded cholesterol concentration less than
the target of 5.2 mmol/l rose from 12% for patients operated on in 1988 to
50% of patients operated on in 1997. Spearman rank correlation 0.77, p < 0.001.

Figure 2 Histogram illustrating the management of serum cholesterol
according to year of operation as determined by the 2001 audit. There
was no significant correlation between the proportion of patients with optimal
cholesterol and year of operation in the second audit.
Pericardial tamponade caused by transvenous temporary endocardial pacing

A 65 year old man was admitted because of faintness and syncope. His ECG showed complete atrioventricular block with a heart rate of 30 beats/min. A transvenous temporary pacing electrode was inserted immediately via the right femoral vein. No complications were observed during the procedure. Coronary angiography was performed on the second day because of chest pain, and showed normal coronary arteries. The patient experienced severe chest pain and haemodynamic collapse two hours after coronary angiography. Transthoracic echocardiography demonstrated pericardial tamponade and the pacing electrode wire crossed the free right ventricular wall (panel). Surgical closure of the right ventricular free wall perforation and pericardial drainage was performed. A permanent pacemaker was later inserted without further complication.

Heart perforation caused by a transvenous pacemaker is a rare complication.