Quantitative assessment of regional peak myocardial acceleration during isovolumic contraction and relaxation times by tissue Doppler imaging

I Hashimoto, X-K Li, A Hejmadi Bhat, M Jones, D J Sahn

Objective: To examine regional wall acceleration and its relation to relaxation.

Study design: 8 sheep were examined by tissue Doppler ultrasound imaging (VingMed Vivid FiVe) in apical four chamber views to evaluate the left ventricular wall divided into six segments and the mitral annulus in two segments. Peak myocardial acceleration during isovolumic periods (pIVA) derived from tissue Doppler echocardiography was analysed during isovolumic contraction (ICT) and relaxation times (IRT) in each segment.

Interventions: After scanning at baseline, haemodynamic status was changed by administration of blood, dobutamine, and metoprolol. Changes of pIVA during IRT and ICT were compared over the four haemodynamic conditions in parallel with their peak positive and negative dP/dt measured with a high frequency manometer tipped catheter.

Results: pIVA of the basal lateral segment during ICT correlated most strongly with peak positive dP/dt (r = 0.96, p < 0.0001) and there was good correlation between pIVA of the mitral valve annulus in the septum during IRT and peak negative dP/dt (r = 0.80, p < 0.0001). pIVA differed significantly between the four haemodynamic conditions during ICT in all segments (p < 0.05); pIVA during IRT did not differ significantly between the four conditions.

Conclusions: pIVA of the basal lateral wall during ICT correlated most strongly with peak positive dP/dt, and pIVA of the septal mitral valve annulus during IRT correlated well with peak negative dP/dt.

METHODS

Experimental preparation

Eight sheep weighing 35–47 kg (mean (SD) 40.1 (4.2) kg) were studied. All sheep underwent thoracotomy under general anaesthesia induced with intravenous sodium pentobarbital (25 mg/kg body weight) and maintained with 1–2% isoflurane with oxygen. The sheep were intubated and ventilated with a volume-cycle respirator. An ECG was monitored from limb leads. Intracavity manometer tipped catheters (model SPC-350, Millar Instruments, Inc, Houston, Texas, USA) were placed in the LV through a carotid artery and in the left atrium through the appendage for pressure recording. Positive and negative peak dP/dt were obtained from derivatives of the pressure curve of the LV. Positive peak dP/dt was used to evaluate global systolic function and negative peak dP/dt was used to evaluate global diastolic function.7 13 Another catheter was positioned in the femoral artery to monitor systemic arterial pressure and blood gas. These catheters were interfaced with a physiological recorder (ES 2000, Gould Inc) with a fluid filled pressure transducer (model PD231D, Gould Statham). Two electromagnetic flow probes (model EP455, Carolina Medical Electronics, Inc, King, North Carolina, USA) were placed to measure cardiac output: one around the skeletonised ascending aorta distal to the output: one around the skeletonised ascending aorta distal to the output: one around the skeletonised ascending aorta distal to

Abbreviations: AL, apical lateral; AS, apical septal; BL, basal lateral; BS, basal septal; ICT, isovolumic contraction time; IRT, isovolumic relaxation time; LV, left ventricular; M1, mid-lateral; MS, mid-septal; MVL, mitral valve annulus; MVS, septal mitral valve annulus; pIVA, peak myocardial acceleration during isovolumic periods; TDI, tissue Doppler imaging
the coronary ostia and proximal to the bronchiocephalic trunk, and the second around the pulmonary artery just above the pulmonary valve. Both flow probes were connected to flowmeters (model FM501, Carolina Medical Electronics) and interfaced with the same physiological recorder (ES 2000) that was used for pressure recording. All haemodynamic data were recorded at paper speed of 250 mm/s. Four consecutive cardiac cycles were analysed for each haemodynamic determination. All operative and animal management procedures were approved by the Animal Care and Use Committee of the National Heart, Lung, and Blood Institute.

Experimental protocol

Baseline, volume loading, dobutamine infusion, and metoprolol infusion were used to produce four different haemodynamic conditions for each animal. After a baseline recording, 500 ml of blood was infused slowly, then intravenous dobutamine (2–10 μg/kg/min) and 5 mg of metoprolol were administered at least one hour apart from the previous stage. We always started the next stage after physiological status returned to the baseline condition. All of the haemodynamic and myocardial velocity data (described below) were acquired simultaneously at each haemodynamic stage with a short period of suspended ventilation for the duration of data acquisition.

Echocardiographic analysis

We used a Vivid FiVe digital ultrasound system (GE/VingMed Ultrasound, Horten, Norway) for the present study. Scans were recorded longitudinally from the apex to acquire an apical four chamber view with a 5.0 MHz phased array transducer. TDI data were acquired with a pulse repetition frequency from 1.0–4.5 kHz and a frame rate varying from 80–130 frames/s maximised as possible. The TDI sector angle was limited to that required to encompass the LV cavity and walls, and line density and packet size were adjusted for smooth consistent data with maximised frame rate. With these settings no aliasing of velocities was encountered. TDI data for the two dimensional images were stored on magnetic optical disk for each stage, with subsequent offline analysis of scan line based digital data. Optimised TDI data for the two dimensional images of the heart for each stage and amplitude were analysed by the EchoPac 6.3 archiving application software of the Vivid FiVe. This software allowed us to evaluate several locations of tissue velocity simultaneously and to display velocity–time relation curves for each.

According to the generally accepted standardised myocardial segmentation, we divided the LV wall into six segments: basal lateral (BL), mid-lateral (ML), apical lateral (AL), basal septal (BS), mid-septal (MS), and apical septal (AS). We then measured the velocity of each segment shown in fig 1A1, B1. In addition, we measured velocities of the septal (MVS) and lateral mitral valve annulus (MVL). Eight sampling points in total on the LV wall were measured in the present study. To keep the same volume of muscle in each sampling region, the autotracking technique was used for all measurements. Autotracking for each sampling point was carefully

Figure 1 Tissue Doppler imaging (TDI) sampling positions for the interventricular septum (IVS) and left ventricular (LV) lateral wall. The LV wall was divided into six wall and two annular segments according to American Heart Association standardised myocardial segmentation. IVS (A1), velocity (A2), and acceleration curves (A3) are shown, each segment trace matching the colour of the sampling position: mitral valve annulus septal (MVS, yellow), basal septal (BS, blue), mid septal (MS, red), apical septal (AS, green). The same positions on the lateral wall (B1) match the velocity (B2) and acceleration curves (B3) for lateral mitral valve annulus (MVL, yellow), basal lateral wall (BL, blue), mid lateral wall (ML, red), and apical lateral wall (AL, green). Isovolumic relaxation time (IRT) and isovolumic contraction time (ICT) are shown for each velocity (A2, B2) and acceleration curve (A3, B3). Definite positive peaks on acceleration curves were noted during IRT (solid white arrow) and ICT (outlined black arrow).
Evaluation of myocardial acceleration

set not to deviate from the wall zone. Autotracking is a newly developed modality that allows semiautomatic correction of the sampling position tracking specific tissue speckles throughout heart cycle.

After frame by frame velocity values were obtained, myocardial velocity acceleration was calculated as the difference between two sequential velocities divided by the frame by frame time interval. The time interval for calculation was consistently set from 20–25 ms averaging two to three consecutive velocity values. Acceleration curves were obtained from each calculation and displayed as in fig 1A3 and fig 1B3. Acceleration curves had positive peaks during isovolumic relaxation time (IRT) and ICT, respectively. ICT was determined by the Q wave on the ECG and by closing of the mitral valve on the two dimensional echocardiographic cine loop. IRT was also determined by the opening of the mitral valve on the cine loop. We analysed pIVAs during both IRT and ICT in each wall segment and mitral valve annulus.

Statistical analysis

All data were expressed as mean (SD). One way repeated measures analysis of variance was performed to compare pIVAs between the four haemodynamic conditions, and Dunnett’s test was used for post hoc analysis. Linear regression analysis was used for comparison between pIVA values and peak dP/dt as a haemodynamic parameter. All statistical analyses were performed with StatView 5.01 (SAS Institute, Cary, North Carolina, USA). A probability value of p < 0.05 was regarded as significant.

RESULTS

Table 1 shows the haemodynamic data related to each stage. Cardiac output significantly increased from 1.62 (0.47) l/min to 2.2 (0.48) l/min with blood loading and to 2.0 (0.48) l/min with dobutamine infusion. Heart rate also significantly changed from 100 (12) beats/min to 142 (25) beats/min with dobutamine infusion. LV end diastolic pressure did change from 100 (12) beats/min to 142 (25) beats/min with dobutamine infusion. Heart rate also significantly changed from 2.2 (0.48) l/min with blood loading and to 2.0 (0.48) l/min with dobutamine infusion. LV end diastolic pressure did change from 8.9 (3.0) mm Hg to 13.5 (4.0) mm Hg, LAP changed from 9.1 (2.5) mm Hg/s to 1697 (299) mm Hg/s peak dP/dt changed from 1110 (324) to 1697 (299) mm Hg/s and peak –dP/dt changed from –1083 (183) to –1290 (137) mm Hg/s with dobutamine infusion. Heart rate significantly increased from 100 (12) beats/min to 142 (25) beats/min with dobutamine infusion. LV end diastolic pressure did change from 12.1 (4.2) mm Hg to 16.2 (6.2) mm Hg

<table>
<thead>
<tr>
<th>Condition</th>
<th>Baseline</th>
<th>Blood loading</th>
<th>Dobutamine</th>
<th>Metoprolol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac output (l/min)</td>
<td>1.62 (0.47)</td>
<td>2.2 (0.48)*</td>
<td>2.0 (0.48)</td>
<td>1.54 (0.24)</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>100 (12)</td>
<td>106 (6)</td>
<td>142 (25)*</td>
<td>81 (8)*</td>
</tr>
<tr>
<td>LVEDP (mm Hg)</td>
<td>12.1 (4.2)</td>
<td>16.2 (6.2)</td>
<td>11.1 (5.9)</td>
<td>15.3 (2.1)</td>
</tr>
<tr>
<td>LAP (mm Hg)</td>
<td>8.9 (3.0)</td>
<td>13.5 (4.0)**</td>
<td>9.1 (2.5)*</td>
<td>10.7 (2.9)</td>
</tr>
<tr>
<td>Peak dP/dt (mm Hg/s)</td>
<td>1110 (324)</td>
<td>1697 (299)*</td>
<td>2260 (558)*</td>
<td>735 (250)*</td>
</tr>
<tr>
<td>Peak –dP/dt (mm Hg/s)</td>
<td>–1083 (183)</td>
<td>–1290 (137)*</td>
<td>–1391 (295)*</td>
<td>–667 (277)*</td>
</tr>
</tbody>
</table>

*p<0.05 compared with baseline; **p<0.005 compared with baseline.

LAP, left atrial pressure; LVEDP, left ventricular end diastolic pressure.

Table 1 Haemodynamic parameters in each condition

Figure 1 shows the sampling positions (fig 1A1, B1), velocities (fig 1A2, B2), and acceleration curves (fig 1A3, B3). In fig 1A, yellow, blue, red, and green lines show velocity and acceleration of MVS, BS, MS, and AS, respectively. In fig 1B, yellow, blue, red, and green lines show velocity and acceleration of MVL, BL, ML, and AL, respectively. In systole, positive wall motion of each segment was noted, corresponding to myocardial contraction, and the velocity of each segment gradually decreased from the mitral valve annulus to the apex along both the IVS and LV wall. However, no myocardial acceleration was observed during systole. On the other hand, in diastole, persistent negative acceleration of myocardium was observed in each segment, corresponding to early and late diastolic velocity waves. Also, during IRT and ICT, acceleration curves had definite positive peaks at all sampling points (fig 1A3, B3). Myocardial acceleration maps confirmed that the myocardium accelerated in the IVS and LV wall during both IRT and ICT (fig 2A, B).

Figure 2 shows a representative velocity and corresponding acceleration curves obtained from the BS at each haemodynamic condition. Figure 3A shows the baseline data. Definite positive peaks were observed during both IRT and ICT in the acceleration curves (dVel/dt). pIVA during ICT was increased by blood loading (fig 3B) and its amplitude was significantly augmented by dobutamine infusion (fig 3C). However, no myocardial acceleration was observed during systole. In contrast, metoprolol infusion significantly decreased pIVA amplitude (fig 3D). However, pIVA during IRT was decreased by metoprolol infusion but was not significantly augmented by blood and dobutamine infusion.

Table 2 shows the changes of pIVA for each segment during IRT produced by each haemodynamic condition. Only pIVA of ML and AL were significantly altered; the other segments did not change significantly with each haemodynamic condition. On the other hand, pIVA during ICT differed significantly between the four haemodynamic conditions and pIVA increased significantly, especially with dobutamine infusion over all ventricular segments (table 3). Blood loading increased pIVA during ICT but this change was not significant in the IVS. The pIVA during ICT of MVL and ML increased significantly with blood loading (fig 4).
Significant differences of pIVA between each segment were observed during IRT as well as ICT (table 2, table 3).

Table 4 shows the correlations between peak negative or positive dP/dt and pIVA during IRT or ICT in each LV wall segment. There was a significant correlation between peak positive dP/dt and pIVA during ICT in all segments. BL correlated most strongly with them ($r = 0.96$, $p < 0.0001$) (fig 4). On the other hand, correlation between negative dP/dt and pIVA during IRT was weak in the LV lateral wall. In the IVS, especially in the MVS, there was a good correlation between pIVA during IRT and peak negative dP/dt ($r = 0.80$, $p < 0.0001$) (fig 4).

![Figure 3](image-url)

Figure 3 Representative velocity and acceleration waveforms (dVel/dt) at (A) baseline and with (B) blood loading, (C) dobutamine infusion, and (D) metoprolol infusion. LV pressure (LVP) and an ECG were simultaneously recorded.

Table 2 Haemodynamic response of peak myocardial acceleration (cm/s²) during isovolumic relaxation time (IRT) for each wall segment

<table>
<thead>
<tr>
<th>Segment</th>
<th>Baseline</th>
<th>Blood loading</th>
<th>Dobutamine</th>
<th>Metoprolol</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVL</td>
<td>87.0 (47.3)</td>
<td>93.2 (38.0)</td>
<td>100.1 (0.48)</td>
<td>59.9 (30.3)</td>
<td>0.18</td>
</tr>
<tr>
<td>BL</td>
<td>95.2 (39.3)</td>
<td>100.9 (54.3)</td>
<td>111.7 (44.9)</td>
<td>74.2 (45.9)</td>
<td>0.38</td>
</tr>
<tr>
<td>ML</td>
<td>72.0 (30.1)</td>
<td>94.6 (30.1)</td>
<td>79.7 (30.3)</td>
<td>54.1 (29.0)</td>
<td>0.044</td>
</tr>
<tr>
<td>AL</td>
<td>83.7 (29.4)</td>
<td>77.9 (31.0)</td>
<td>92.3 (46.9)</td>
<td>39.0 (19.9)</td>
<td>0.041</td>
</tr>
<tr>
<td>MVS</td>
<td>109.9 (33.2)</td>
<td>106.2 (30.9)</td>
<td>143.1 (65.6)</td>
<td>70.2 (29.8)</td>
<td>0.30</td>
</tr>
<tr>
<td>BS</td>
<td>70.1 (28.2)</td>
<td>92.0 (25.3)</td>
<td>93.6 (55.1)</td>
<td>56.3 (26.0)</td>
<td>0.22</td>
</tr>
<tr>
<td>MS</td>
<td>51.8 (25.7)</td>
<td>73.8 (22.0)</td>
<td>71.4 (25.8)</td>
<td>60.5 (44.8)</td>
<td>0.27</td>
</tr>
<tr>
<td>AS</td>
<td>45.6 (24.6)</td>
<td>42.7 (25.8)</td>
<td>48.6 (35.5)</td>
<td>48.6 (35.5)</td>
<td>0.37</td>
</tr>
</tbody>
</table>

AL, apical lateral; AS, apical septal; BL, basal lateral; BS, basal septal; ML, mid-lateral; MS, mid-septal; MVL, lateral mitral valve annulus; MVS, septal mitral valve annulus.
DISCUSSION

In the present study, we showed the feasibility of using pIVA for evaluating LV contractility and relaxation along with regional analysis of ventricular wall function. TDI is a newly developed modality that allows us to measure the velocity of the ventricular wall with high spatial and temporal resolutions. Myocardial acceleration can be obtained from the derivative of the velocity curve and allows detection of the pre-excitation region of the Wolff-Parkinson-White syndrome or other abnormalities in conduction.78

We calculated myocardial acceleration as the difference between two sequential velocities divided by the frame by frame time interval. The time interval for calculation, which was determined by the frame rate, was consistently set from 20–25 ms, averaging two to three consecutive velocity values because raw velocity data obtained frame by frame still contained noise components and had the possibility of leading to miscalculation. Therefore, averaging of consecutive velocity values may eliminate the noise but may lose velocity information during isovolumic periods. A high frame rate is considered to be an important instrumental preset for evaluating pIVA. We used a rate of about 100 frames/s in almost every experiment and averaged two or three consecutive velocities to display the acceleration curve. There were no experimental settings in which we could not identify both pIVAs during IRT and ICT in the present study.

Autotracking was a useful application to keep the same sampling region and enabled the segmental wall analysis in the present study. In conventional sampling, it was impossible to measure the velocity of a specific wall segment continuously because the wall moves but the sampling position is fixed. We applied this tracing technique to all measurements in this study.

Our data showed that tissue Doppler derived pIVA correlated differently with peak dP/dt depending on the ventricular segment. Average amplitudes of pIVA were also significantly different depending on the ventricular segment. pIVA amplitudes were maximal in the mitral valve annulus and BS or BL wall segments, and pIVA gradually decreased from base to apex similarly to velocity difference.15 16 During ICT, there was a good correlation between pIVA and peak positive dP/dt in both the IVS and the LV lateral wall. In the present study, pIVA of BL correlated most strongly with peak positive dP/dt. Although the amplitude of pIVA of the AL or AS segment was significantly smaller than that of the BL or BS segments, there was a good correlation between them in both the IVS and LV wall. Conversely, although there was a good correlation between pIVA of the IVS during IRT and negative dP/dt, pIVA of the LV wall during IRT did not correlate well with negative dP/dt. Unlike contraction, relaxation is a passive ventricular event caused by early diastolic filling and atrial contraction and may occur longitudinally to the heart.15 16 18 When scanned longitudinally from the apex, while the IVS moves longitudinally along the ultrasound, the LV free wall moves in both lateral and longitudinal directions. This may make it hard to interpret the velocity vector of the LV lateral wall especially during IRT.

In the clinical situation, a preload independent marker is needed to evaluate ventricular function. Pressure derived dP/dt is well known to indicate a significant load dependence compared with a conductance catheter derived index (for example, the end systolic pressure–volume relation).19 Ultrasound derived strain rate has been reported to be a load dependent marker.8 In the present study, ultrasound derived pIVA was relatively insensitive to blood loading but was sensitive to an inotropic agent during ICT. Our data are

Table 3 Haemodynamic response of peak myocardial acceleration (cm/s²) during isovolumic contraction time (ICT) for each wall segment

<table>
<thead>
<tr>
<th>Segment</th>
<th>Baseline</th>
<th>Blood loading</th>
<th>Dobutamine</th>
<th>Metoprolol</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVL</td>
<td>146.3 (69.7)</td>
<td>249.7 (137.1)**</td>
<td>332.9 (131.2)**</td>
<td>89.2 (42.3)</td>
<td>0.0005</td>
</tr>
<tr>
<td>BL</td>
<td>164.5 (30.9)</td>
<td>256.3 (58.9)</td>
<td>277.1 (126.0)*</td>
<td>126.6 (52.3)</td>
<td>0.012</td>
</tr>
<tr>
<td>ML</td>
<td>142.7 (40.2)</td>
<td>247.4 (93.3)*</td>
<td>278.6 (76.7)*</td>
<td>84.4 (20.5)*</td>
<td>0.0002</td>
</tr>
<tr>
<td>AL</td>
<td>131.7 (33.9)</td>
<td>202.9 (35.9)</td>
<td>288.8 (91.4)*</td>
<td>66.3 (29.0)*</td>
<td>0.0001</td>
</tr>
<tr>
<td>MVS</td>
<td>159.6 (62.9)</td>
<td>263.8 (89.3)</td>
<td>305.5 (126.5)*</td>
<td>96.2 (48.9)</td>
<td>0.010</td>
</tr>
<tr>
<td>BS</td>
<td>175.5 (81.5)</td>
<td>240.3 (61.4)</td>
<td>298.4 (131.2)*</td>
<td>83.0 (31.3)*</td>
<td>0.0007</td>
</tr>
<tr>
<td>BS</td>
<td>132.6 (78.9)</td>
<td>173.2 (92.2)</td>
<td>276.3 (109.8)</td>
<td>78.9 (58.1)*</td>
<td>0.033</td>
</tr>
<tr>
<td>AS</td>
<td>101.6 (46.2)</td>
<td>96.7 (42.0)</td>
<td>191.1 (88.2)*</td>
<td>67.7 (21.4)</td>
<td>0.036</td>
</tr>
</tbody>
</table>

$p < 0.05$ compared with baseline; $**p < 0.0005$ compared with baseline.
in agreement with the experience of Vogel and colleagues. Additionally, our data showed that pIVA during IRT was less sensitive to preload.

Limitations
Relatively laborious offline measurements are required to obtain the acceleration curves from TDI data. Also, a very high frame rate may require narrowing of the TDI sector angle in some patient studies. In the present study, we set a TDI sector angle to encompass the LV cavity and wall. TDI measurements were completely synchronised in both the septum and the LV lateral wall, but a decrease of frame rate measurements were completely synchronised in both the TD sector angle to encompass the LV cavity and wall. TDI angle in some patient studies. In the present study, we set a frame rate (150 to 200 frames/s) can be obtained. In agreement with the experience of Vogel and colleagues.

Conclusions
pIVA is considered to be a sensitive and preload independent marker for evaluating LV function. pIVA observed in IVS during IRT correlates well with negative dP/dt and pIVA observed in the LV wall during IRT correlates well with positive dP/dt.

Authors’ affiliations
I Hashimoto, K-K Li, A H Bhat, D J Sahn, Clinical Care Center for Congenital Heart Disease, Oregon Health & Science University, Portland, Oregon, USA.
M Jones, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.

Competing interests: David J Sahn is an occasional consultant for GE Medical Systems. We do not believe this has had any effect on the conduct of this study. None of the other authors have any conflict of interest.

Table 4 Correlations between peak positive or negative dP/dt and peak myocardial acceleration during IRT or ICT in each wall segment

<table>
<thead>
<tr>
<th>Segment</th>
<th>Peak dP/dt and pIVA during IRT</th>
<th>Peak dP/dt and pIVA during ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVI</td>
<td>0.54</td>
<td>0.0024</td>
</tr>
<tr>
<td>BL</td>
<td>0.29</td>
<td>0.132</td>
</tr>
<tr>
<td>ML</td>
<td>0.56</td>
<td>0.0016</td>
</tr>
<tr>
<td>AL</td>
<td>0.63</td>
<td>0.0003</td>
</tr>
<tr>
<td>MVS</td>
<td>0.80</td>
<td><0.0001</td>
</tr>
<tr>
<td>BS</td>
<td>0.73</td>
<td><0.0001</td>
</tr>
<tr>
<td>MS</td>
<td>0.75</td>
<td><0.0001</td>
</tr>
<tr>
<td>AS</td>
<td>0.60</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

*p<0.05 compared with baseline; **p<0.0005 compared with baseline. CC, correlation coefficient; pIVA, peak myocardial acceleration during isovolumic periods.

REFERENCES

www.heartjnl.com
Quantitative assessment of regional peak myocardial acceleration during isovolumic contraction and relaxation times by tissue Doppler imaging

I Hashimoto, X-K Li, A Hejmadi Bhat, M Jones and D J Sahn

Heart 2005 91: 811-816
doi: 10.1136/hrt.2004.033845

Updated information and services can be found at:
http://heart.bmj.com/content/91/6/811

References
This article cites 19 articles, 8 of which you can access for free at:
http://heart.bmj.com/content/91/6/811#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Clinical diagnostic tests (4779)
Echocardiography (2127)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/