and that PPARα is an essential regulator of metabolism in hypoxia. PPARα−/− mice (n=18) and wild-type (wt) controls (n=20) were exposed to 3 weeks of normobaric hypoxia. Control activated receptor α−−/− (n=17) and wt mice (n=21) were housed in normoxic conditions within the same room. Oxygen content was reduced incrementally in the first week of housing, followed by 2 weeks at 11% oxygen. In-vivo cardiac function was measured using multislice cardiac magnetic resonance imaging. Hearts were perfused in the Langendorff mode to measure palmitate oxidation and glycolysis using 3H-labelled substrates. Cardiac output was unchanged in hypoxic wt and normoxic PPARα−−/− mice, but was reduced by 31% by hypoxia in PPARα−−/− mice (p<0.02). Late-stage ventricular filling was 46% lower in hypoxic PPARα−−/− mice (p<0.01). Hypoxia reduced palmitate oxidation by 27% in mouse wt hearts, but did not affect PPARα−−/− hearts. Hypoxia increased net lactate efflux 2.4-fold in wt hearts from wt animals (p<0.01), but lactate efflux from PPARα−−/− hearts was unchanged with hypoxia. Hypoxia increased basal glycolytic flux 2.4-fold in wt hearts but did not alter lactic flux in PPARα−−/− mouse hearts (p>0.01), which was already 2.7-fold greater than wt hearts. Thus PPARα−−/− hearts lack the metabolic flexibility essential for adaptation to chronic hypoxia, and their inability to upregulate glycolysis probably impairs cardiac function.

Conclusions Nox2+/− BMM display marked abnormalities in morphological and migratory behaviour that may contribute significantly to the ability of the monocyte to differentiate and migrate in vivo in response to pathological stimuli. This phenotype could underlie the protection against fibrosis observed in vivo in Nox2+/− mice.

006 NORMOBARIC HYPOXIA IMPAIRS CARDIAC ENERGETICS IN NORMAL HUMAN VOLUNTEERS

doi:10.1136/hrt.2009.191049f

1,2C Holloway, 1,2L Cochin, 1,2J Codreanu, 1E Bloch, 1M Fatemiah, 1C Szmitel, 1H Atherton, 1L Heather, 2J Francis, 2S Neubauer, 2P Robbins, 2K Clarke. 1Department of Physiology, Anatomy and Genetics, University of Oxford, UK; 2University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK

Background In the first few days of hypoxic exposure, left ventricular dysfunction is consistently observed in the human heart, yet the cellular mechanisms underlying the dysfunction are poorly understood.

Objective Our hypothesis was that normobaric hypoxia impairs cardiac energetics, leading to cardiac dysfunction in healthy subjects.

Methods Normal healthy volunteers underwent 20 h of normobaric hypoxia in purpose-built hypoxia chambers. The partial pressure of oxygen during end tidal expiration (FETO2) was kept between 50 and 60 mm Hg, while keeping peripheral oxygen saturation (SpO2) above 80%. Cardiac function was measured using magnetic resonance imaging and echocardiography. High-energy phosphate metabolism was measured as the ratio of phosphocreatine to ATP (PCR/ATP) by 31phosphorus magnetic resonance spectroscopy before and after 20 h of hypoxia. Healthy men (n=12, aged 24±2 years) were recruited from the University of Oxford.

Results During hypoxia, FETO2 and SpO2 averaged 55±1 mm Hg and 83.6±0.4%, respectively. There was a 15% reduction in cardiac PCR/ATP, from 2.0±1 to 1.7±0.1 after hypoxia (p<0.01) and reduced diastolic function, measured as E/E′, from 6.1±0.4 to 7.5±0.7, p<0.01.

Conclusion Short-term normobaric hypoxia led to rapid changes in cardiac metabolism and alterations in diastolic function in normal human hearts. Impaired high-energy phosphate metabolism may explain the cardiac dysfunction observed after hypoxic exposure, whether in health or disease.

007 ROLES OF P47PHOX S303/S304 PHOSPHORYLATION IN TNFα-INDUCED ENDOTHELIAL REACTIVE OXYGEN SPECIES PRODUCTION AND MITOGEN-ACTIVATED PROTEIN KINASE ACTIVATION

doi:10.1136/hrt.2009.191049g

L Teng, J-M Li. Cardiovascular Research Theme, Faculty of Health and Medical Sciences, University of Surrey, UK

Endothelial cells express constitutively a Nox2 oxidase, which by generating reactive oxygen species (ROS) plays an important role in TNFα signalling. The Nox2 has at least four regulatory subunits and p47phox is a major regulatory subunit of this enzyme. It has been reported that phosphorylation of double serines (S303/S304) in p47phox is a key step for Nox2 activation. In this study, we investigated the role of p47phox S303/S304 phosphorylation in TNFα-induced ROS production and mitogen-activated protein kinase (MAPK) activation in endothelial cells. Serines 303/304 (human p47phox cDNA) were replaced to alanines by site-directed mutagenesis and 48 h after transfection, cells were stimulated with p47phox and mitogen.
Nox2-deficient bone marrow-derived macrophages exhibit defects in cell spreading and migration
S Chaubey

Heart 2010 96: e2
doi: 10.1136/hrt.2009.191049e

Updated information and services can be found at:
http://heart.bmj.com/content/96/4/e2.1

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/