inflammatory cells (\sim 1.8-fold, p<0.05) and 30% (p<0.05) more VCAM-1 positive blood vessels in AngII treated TG hearts. Furthermore, isolated TG endothelial cells recruited \sim 2-fold (p<0.05) more leukocytes than WT upon AngII treatment. **Conclusion** These results indicate there is a cell-specific role of endothelial Nox2 in the development of fibrosis. Endothelial Nox2 enhances AngII-induced cardiac fibrosis, possibly by enhancing inflammatory cell recruitment and influx via VCAM-1 expression. Although inflammatory cells may be important for the development of fibrosis, our results indicate that Nox2 in these cells is not essential for any pro-fibrotic effect. #### 139 # ENDOTHELIAL SPECIFIC INSULIN RESISTANCE PROMOTES THE DEVELOPMENT OF ATHEROSCLEROSIS doi:10.1136/heartjnl-2011-300198.139 ¹M C Gage, ¹N Yuldasheva, ²C Jackson, ¹M Kearney, ¹H Imrie, ¹H Viswambharan, ¹M Kahn, ¹J Smith, ¹S Galloway, ¹R Cubbon, ¹P Sukumar, ¹A Aziz, ¹S Wheatcroft. ¹Leeds University, Leeds, UK; ²University of Bristol, Bristol, UK **Background** Global insulin resistance and endothelial dysfunction have been identified as predisposing factors for atherosclerosis. However, it is unclear whether selective insulin resistance in endothelial cells alone, is sufficient to promote atherosclerosis. Here we addressed this question by crossing Endothelial Specific Mutant Insulin Receptor Over-expressing (ESMIRO) mice with ApoE null mice. ESMIRO mice over-express a human insulin receptor with Ala-Thr1134 mutation in the tyrosine kinase domain (which disrupts insulin signalling) selectively in endothelial cells under the control of the tie-2 promoter/enhancer. **Methods** Male Apo $\dot{E}^{-/-}$ ESMIRO mice were compared with sexmatched littermate Apo $\dot{E}^{-/-}$ mice (both on a C57Bl6 background) after feeding a Western-style diet for 12 weeks. **Results** ApoE $^{-/-}$ ESMIRO mice were morphologically indistinguishable from ApoE $^{-/-}$ control littermates, with normal development and no difference between groups in body mass. Heart rate, systolic blood pressure, glucose tolerance, insulin sensitivity and fasting glucose levels were similar in ApoE $^{-/-}$ ESMIRO and ApoE $^{-/-}$ mice. Aortic lipid deposition, assessed by en-face oil red O staining, was similar in ApoE $^{-/-}$ ESMIRO and ApoE $^{-/-}$ mice (6.4%±0.5% vs 5.8%±0.5%; p=0.39). However, atherosclerotic lesion area in cross sections of aortic sinus was significantly increased in ApoE $^{-/-}$ ESMIRO mice compared to ApoE $^{-/-}$ controls (24.8%±2.4% vs 16.6%±2.4%; p=0.02). Absolute plaque size was also significantly increased in ApoE $^{-/-}$ ESMIRO mice compared to ApoE controls (226.448.9±16.154 μm^2 vs 149.424.41±24.221 μm^2 ; p=0.01). **Conclusions** Endothelial specific insulin resistance is sufficient to promote atherosclerosis and increase lesion area in ApoE null mice. This suggests that enhancing endothelial insulin sensitivity may be an appropriate target to prevent atherosclerosis in insulin-resistant conditions. #### 140 # IN VIVO DEPLETION OF ENDOGLIN RESULTS IN SIGNIFICANT LEFT VENTRICULAR REMODELLING doi:10.1136/heartjnl-2011-300198.140 ¹B J Davison, ¹R Redgrave, ¹B Keavney, ²A Blamire, ¹H Arthur. ¹Institute of Human Genetics, Newcastle University, Newcastle Upon Tyne, UK; ²Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK Endoglin, a TGF β co-receptor, is essential for cardiovascular development. However, endoglin also has an important role in fibrosis in adult life. Endoglin heterozygous mice have been shown to have reduced fibrosis in response to renal injury. They also have signifi- cantly reduced cardiac function following myocardial infarction. In rat cardiac fibroblasts, endoglin expression is up regulated following stimulation with angiotensin II and TGFB, resulting in reduced expression of MMP1 and increased expression of collagen I. These effects are inhibited by an endoglin specific antibody. Using our conditional endoglin knockout mice we sought to investigate the role of endoglin in cardiac healing following myocardial infarction. Adult Eng fl/fl Rosa26-Cre ERT2 or control (Eng fl/fl) mice were treated with intraperitoneal injection of tamoxifen for 5 days to activate Cre^{ERT2} and deplete endoglin by Cre-lox recombination. Mice then underwent surgical coronary artery ligation or sham operation. Cine cardiac MRI was performed 28 days after injury. Measurement of left ventricular (LV) volumes and myocardial mass were made using ImageJ, and parameters of cardiac function were calculated. We found that LV volumes and mass were significantly increased (p<0.001) and ejection fraction significantly reduced (p=0.005) in endoglin deficient mice compared to controls. However, we also noticed LV volume and mass were increased in sham operated endoglin deficient mice. This led us to investigate the effect of endoglin knockdown on normal heart structure and function in adult mice. Cine cardiac MRI was therefore performed on mice without any surgical procedure after endoglin knockdown. We found that in the endoglin deficient mice, LV volume and mass were again significantly increased (p<0.03). However, ejection fraction did not differ significantly from controls. These results demonstrate that depletion of endoglin results in significant left ventricular remodelling and suggest that endoglin plays an essential role in the maintenance of normal cardiac structure. The fact that cardiac function was preserved indicates that this is not a cardiomyopathic process and we hypothesise that the increased left ventricular volume in the endoglin-deficient mice may be the result of alterations in the extracellular matrix. We are currently investigating this potential molecular mechanism for left ventricular remodelling in the absence of endoglin. #### 141 ### TISSUE FACTOR PATHWAY INHIBITOR REGULATES VASCULAR DEVELOPMENT IN ZEBRAFISH doi:10.1136/heartjnl-2011-300198.141 ¹E W Holroyd, ²C K Pierret, ²V M Bedell, ³J Townend, ²S C Ekker, ²R D Simari. ¹Queen Elizabeth Hospital, Birmingham, UK; ²Mayo Clinic, Rochester, UK; ³Queen Elizabeth Hospital, Rochester, UK **Introduction** Angiogenesis requires the coordinate regulation of multiple biological pathways, including haemostasis. Tissue factor pathway inhibitor (TFPI) is a potent anticoagulant molecule, inhibiting tissue factor-led coagulation. However, the role of TFPI in vascular development is unknown. Zebrafish (Danio rerio) provide a unique model system to study vascular development in vertebrates. Despite the divergence of jawed fish (teleosts) over 430 million years ago, there is notable conservation of the constituent molecules of the clotting cascade. Multiple features make this vertebrate model unique, including its genetic accessibility, the ability to titrate the degree of genetic knock-down, external embryonic development, and the transparent nature of the embryos. **Methods** Using in-situ hybridisation techniques, we demonstrate TFPI expression during early vertebrate development. We then utilise transgenic fish with labelled endothelium (Fli1GFP) and erythrocytes (GATA1dsRed), to study in real time, concomitant fluorescent imaging of both structural development and dynamic blood flow observation, in living zebrafish embryos. **Results** TFPI expression was identified at 24 h post fertilisation (hpf) in the pronephros (Abstract 141 figure 1—dark blue staining denotes TFPI expression; none seen in control embryos). Subsequently, TFPI mRNA became more abundant, localising to A78 Heart June 2011 Vol 97 Suppl 1