[gw22-e0718] HIGH DENSITY LIPOPROTEIN INDUCES RATS MESENCHYMAL STEM CELLS PROLIFERATION through activating pisk-akt pathway

Jianfeng Xu^{1}, Juying Qian ${ }^{1}$, Xinxing Xie1², Jianying Ma¹, Li Lin², Mingqiang Fu¹, Aijun Sun¹, Yunzeng Zou ${ }^{1}$, Junbo Ge ${ }^{11}$ Zhongshan Hospital, Shanghai, China; ${ }^{2}$ Eastern Hospital, Hong kong, China
10.1136/heartjnl-2011-300867.67

Objective To explore the effect of high density lipoprotein (HDL) on the proliferation of mesenchymal stem cells (MSCs), and to elucidate the role of PI3K-Akt pathway in the potential regulation of it.
Methods MSCs were collected from the femora of SpragueDawley rats and were treated with HDL in different concentration ($0,20 \mathrm{ug} / \mathrm{ml}, 50 \mathrm{ug} / \mathrm{ml}, 100 \mathrm{ug} / \mathrm{ml}$) for 24 h ; and then were treated with HDL ($50 \mathrm{ug} / \mathrm{ml}$) for $24 \mathrm{~h}, 48 \mathrm{~h}$ and 72 h , respectively. The proliferation of MSCs in each group was compared by Cell Counting Kit-8 (CCK-8) and BrdU cell proliferation assay. The expression of phosphorylation of Akt was evaluated by Western Blotting. LY294002, an inhibitor of PI3K, was used to down-regulate the activity of PI3K-Akt pathway.
Results The results showed that HDL induces markedly MSCs proliferation in time- and concentration-dependent manner. Akt phosphorylation was significantly increased by $2.35-$ - 4.52 -, and 5.89 -folds after simulation by $20 \mathrm{ug} / \mathrm{ml}, 50$ $\mathrm{ug} / \mathrm{ml}$ and $100 \mathrm{ug} / \mathrm{ml}$ HDL for 24 h (p value all<0.05). And when incubated with HLD ($50 \mathrm{ug} / \mathrm{ml}$), the phosphorylation of Akt was activated at 15 min , and peaked at 60 min With the use of LY294002, the proliferation of MSCs was attenuated by $32 \%(26 \sim 40 \%$, p value <0.05) when treated with HLD ($50 \mathrm{ug} /$ ml) for 24 h .
Conclusion HDL improved the proliferation of MSCs in timeand concentration-dependant manner, and PI3K/Akt pathway was one of the underlying mechanisms involved in it.

