Mete Gursoy, Ali Can Hatemi

1Department of Cardiovascular Surgery, Bakirköy Dr. Sadi Konuk Training and Research Hospital; 2Department of Cardiovascular Surgery, Department of Cardiovascular Surgery

Correspondence to Dr Mete Gursoy, Bakirköy Dr Sadi Konuk Eğitim Arastırma Hastanesi Kalp ve Damar Cerrahisi Kliniği Tıbbi Sağlık Nakli No:11 Zuhuratbaşı/ İstanbul 34147, Türkiye; dmetegursoy@yahoo.com

Contributors MG and ACH provided intellectual content of this article.

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

Published Online First 25 May 2012

Heart 2012;98:1181. doi:10.1136/heartjnl-2011-301354

REFERENCES


The Authors’ reply: We thank Gursoy and Hatemi for their interest in our article and appreciate the editor for the opportunity to reply. Following the surgical correction of left-side heart valve diseases, persistent pulmonary hypertension predisposes to aggravation of tricuspid valve (TV) function; however, whether preoperative pulmonary hypertension is associated with postoperative TV dysfunction is controversial. In our practice, preoperative level of pulmonary artery pressure (PAP) might not have affected the decision to repair functional tricuspid regurgitation (TR) since preoperative PAP level was not different according to the performance of TV repair (p=0.20). With regard to changes in PAP in patients with untreated mild TR, preoperative estimated systolic PAP was 40.3±14.3 mm Hg and it decreased to 30±6.0 mm Hg on last follow-up (p=0.015). Similarly, prevalence of pulmonary hypertension (systolic PAP>45 mm Hg) decreased from 24.8% to 4.3%. This observation indicates that persistent pulmonary hypertension is not common in mild TR patients undergoing mitral valve (MV) replacement, and that preoperative level of PAF may not be an important determinant of late TV function. In our study, preoperative pulmonary hypertension was inversely related to late TR on univariate analysis, which was not relevant in multivariable models.

Several retrospective studies indicate that postoperative atrial fibrillation negatively affects TV function and the Maze procedure is protective against worsening of TR. In our study, however, the Maze procedure has not emerged as an independent predictor of TV function. This may be attributable to the relatively small number of postoperative TR cases in included patients in multivariable models, although we used a stepwise elimination technique. Meanwhile, ‘concomitant Maze procedure’ was included in the propensity score model as one of baseline variables; therefore, the positive effects of TV repair on various clinical outcomes might not have been affected by postoperative rhythm status in our study. Finally, in agreement with Gursoy, I believe the prevalence of functional TR is higher with rheumatic MV disease than with degenerative causes. This is perhaps related with the longstanding nature of rheumatic disease. Similarly, atrial fibillation was combined in 87.7% (207/236) of patients in our study, which was much higher than the reported prevalence of 40–60% in patients undergoing MV surgery in general.

Joon Bum Kim, Jae Won Lee

Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Correspondence to Dr Joon Bum Kim, Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine; 388-1 Pungnap-dong Songpa-gu, Seoul 138-736, South Korea; jbkim1975@amc.seoul.kr

Contributors JBK, JWL participated in writing the manuscript.

Competing interests None.

Provenance and peer review Commissioned; internally peer reviewed.

Published Online First 25 May 2012


REFERENCES


Important cost categories not included: transcatheter aortic valve implantation probably less cost-effective

Patients eligible for the transcatheter aortic valve implantation (TAVI) intervention are old (>75 years), face a high risk of mortality, and generally have multiple comorbidities.1 Healthcare consumption of this group of patients can, therefore, be expected to be high.2 3 As a consequence, life extension in this group would probably result in additional healthcare consumption in so-called life years gained. Healthcare consumption in life years gained could be due to treatment of a large variety of diseases related to old age and/or consumption of long-term care due to disabilities. In the article by Watt et al,4 only a limited set of cost categories is included, which results in too favourable estimates of the cost effectiveness of TAVI. Current NICE guidelines do not advocate the inclusion of medical costs in life years gained of diseases not directly related to the intervention under study.7 Ignoring costs that are relevant for the NHS is difficult to defend using scientific arguments.5–6 It also results in favouring interventions that primarily increase length of life over interventions that mainly improve quality of life.8 Broadening the perspective beyond the NHS, as Watts et al suggest, would probably result in even less favourable cost-effective estimates, as the target group of TAVI does not participate in the labour market anymore and, therefore, consumes more than they produce.9 While there may be unforbearable implications of including more cost categories that warrant discussion, this can never be a reason to exclude foreseeable costs.

Pieter van Baal

Correspondence to Dr Pieter van Baal, Institute of Health Policy & Management, Erasmus University Rotterdam, PO Box 1, Rotterdam 3720HA, The Netherlands; vanbaal@bmg.eur.nl

Competing interests None declared.

Provenance and peer review Not commissioned; internally peer reviewed.

Published Online First 15 June 2012

Heart 2012;98:1182. doi:10.1136/heartjnl-2012-302272

REFERENCES


The Authors’ reply: Van Baal argues that we have under-estimated the cost associated with transcatheter aortic valve implantation (TAVI) and as a result, we have generated an overly-optimistic picture of its cost effectiveness.1 This view is based on the fact that we have not allowed for the cost of managing the range of diseases (other than aortic stenosis) that can be experienced during the additional years of life that we estimate will result from the use of TAVI rather than medical management. For example, van Baal implies that we should have included the cost associated with the chance of lung cancer being diagnosed during the additional years of life that have been generated by TAVI. The authors are correct in referring to arguments which have been made in favour of the inclusion of these ‘unrelated’ costs in economic evaluation. However, only a few of the health systems around the world, which use formal economic evaluation to support decisions about the use of new medical technologies, advocate the inclusion of these costs. Given that our analysis adopted the perspective of the UK NHS and the methodological guidelines published by National Institute for Health and Clinical Excellence,2 which do not support the inclusion of ‘unrelated costs’, we did not include these into our model. Furthermore, if we had incorporated these costs, the interpretation of the resulting cost effectiveness ratio would be unclear. This is because the routine inclusion of such costs would also need to be considered for all other interventions provided by the National Health Service which would then impact on the cost effectiveness threshold against which the TAVI cost effectiveness ratio is compared.

REFERENCES


CORRECTION

doi:10.1136/heartjnl-2012-301877ab

S McCusker, P McKavanagh, L Lusk, A Agus, P Ball, M Harbinson, T Trinnick, E Duly, G Walls, S Shevlin, C L McQuilian, M Alkhalil, P Donnelly. BCS Abstracts 2012: 097 Calcium scores are more cost effective for risk stratification than NICE’s modified diamond Forrester calculator. Heart 2012;98(Suppl 1):A55–A56 doi:10.1136/heartjnl-2012-301877b.97. The first author of this abstract should be P McKavanagh.
The Authors' reply

Joon Bum Kim and Jae Won Lee

Heart 2012 98: 1181-1182 originally published online May 25, 2012
doi: 10.1136/heartjnl-2012-302186

Updated information and services can be found at:
http://heart.bmj.com/content/98/15/1181.2

These include:

References
This article cites 4 articles, 2 of which you can access for free at:
http://heart.bmj.com/content/98/15/1181.2#BIBL

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (232)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/