(WT: -15.6 ± 2.1 , PPAR- α -/-: $-28.0 \pm 3.8\%$; p<0.05), but unaltered in Nox2-/- mice. Interestingly, associated increases in PPAR- α mRNA (real-time RT-PCR) in WT TAC versus sham m ice (1.31 ± 0.08 vs 1.01 ± 0.05 arbitrary units: p<0.05) were reversed in Nox2 -/- mice (0.83±0.11 vs 1.11±0.10; p<0.05), whilst parallel reductions in Nox2 mRNA were evident in WT (0.49±0.03 vs 1.03 ± 0.09 ; p<0.05) but not PPAR- α -/- mice. These data clearly suggest that cross-talk between PPAR- α and Nox2 plays an important role in LVH. To elucidate underlying mechanisms, a combined proteomic/transcriptomic approach using DIGE gel-LC-MS proteomics and Illumina mouse Ref-8 beadchips was employed in LV tissue (n=4/group). Data analysis by DAVID functional annotation tools identified several genes whose TAC-regulated differential expression (proteomics: EC>1.2, p<0.05; transcriptomics: EC>1.2, p<0.001) was significantly altered in the absence of PPAR- α and/or Nox2, including integrin- α /- β subunits, desmin, and AP-1 subunits c-Fos and c-Jun. These potential key mediators provide exciting new avenues of investigation which may uncover novel mechanisms underlying important interaction between PPAR- α and Nox2 in LVH.

S5

INVESTIGATION OF MECHANISMS UNDERLYING THE INTERACTION BETWEEN NOX2 NADPH OXIDASE AND PPAR- α in left ventricular hypertrophy

doi:10.1136/heartjnl-2012-303148a.5

A P Harvey,* E Robinson, D A Simpson, B J McDermott, D J Grieve. *Queen's* University Belfast, Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Grosvenor Road, Belfast BT12 6BA

NADPH oxidases and peroxisome proliferator–activated receptor- α (PPAR- α) play key roles in left ventricular hypertrophy (LVH) with emerging evidence supporting an important interaction. To investigate the nature of this interplay, gene-modified mice lacking PPAR- α (PPAR- α –/–) or Nox2 (Nox2–/–), and wild-type (WT) controls underwent thoracic aortic constriction (TAC) or sham surgery (n>8) before study at 7 days. TAC-induced increases in LV/ body weight were abolished in both PPAR- α –/– and Nox2–/– mice (WT: 10.8±2.1, PPAR- α –/–: 1.6±1.8, Nox2–/–: 1.7±3.0%; p<0.05), whereas LV contractile dysfunction (echocardiographic fractional shortening) was accentuated in PPAR- α –/– mice