BCS Abstracts 2013

P2Y12 INHIBITION GREATLY POTENTIATES THE ANTI-PLATELET EFFECTS OF PROSTACYCLIN AND NITRIC OXIDE

M H Lundberg,¹ N S Kirkby,¹ J A Mitchell,² T D Warner¹ ¹William Harvey Research Institute, Barts and the L; ²National Heart and Lung Institute, Imperial College

doi:10.1136/heartjnl-2013-304019.261

When P2Y₁₂ receptors on platelets are blocked by commonly used anti-platelet drugs such as clopidogrel and prasugrel, the inhibitory brake on adenylate cyclase (AC) activity is lifted and the antiplatelet effects of prostacyclin (PGI₂) and other agents that activate platelet AC are synergistically enhanced. We have recently demonstrated that blockade of the P2Y₁₂ receptor also enhances the antiplatelet effect of nitric oxide (NO). The aim of this study was to study the interaction between PGI₂, NO and P2Y₁₂ receptor inhibition on platelet aggregation and to determine pharmacologically, using isobolographic analysis, if this interaction constitutes a true synergy or simply an additive effect.

Methods Blood was collected by venepuncture into 0.32% trisodium citrate. Platelet rich plasma (PRP) was isolated by centrifugation and either tested directly or further washed with Tyrode's-Hepes buffer. The PRP or washed platelets (WP) were incubated with the $P2Y_{12}$ inhibitor prasugrel active metabolite (PAM; 3 µM) or vehicle (0.5% DMSO) for 30 min followed by 1 min incubation with the NO donor DEA/NONOate (10 nM-1 mM) and/or PGI₂ (0.2 nM-100 nM) and/or vehicle (0.01M NaOH). WP platelet aggregation to thrombin (1U/ml) was measured by 96-well aggregometry and PRP platelet aggregation to TRAP-6 (Thrombin Receptor Activating Peptide-6, 30 µM) or collagen (30 μ g/ml) was measured by light transmission aggregometry (LTA). Isobolograms were constructed by plotting the IC_{50} values for DEA-NONOate and PGI2 in vehicle or PAM treated WP. Data represents mean±SEM % final platelet aggregation from 4-5 healthy volunteers.

Results Thrombin (1U/ml), TRAP-6 (30 μ M) or collagen (30 μ g/ml) all produced robust aggregation responses in WP and PRP respectively which was largely unaffected by the addition of 10nM DEA-NONOate and 4nM PGI₂ or 3 μ M PAM. However, the combination of all three (NO, PGI₂ and PAM) resulted in almost complete inhibition of platelet aggregation.

Isobolographic analysis of the data showed that the interaction between DEA/NONOate, PGI_2 and PAM in WP was strongly synergistic (isoboles curved away from the predicted linear line for an additive relationship).

Conclusions These data confirm that activation of platelet $P2Y_{12}$ receptors by secreted ADP limits the anti-platelet effects of both

% aggregation WP	Vehicle	+ 10nM DEA/NONOate and 4nMPGI ₂	ЗµМРАМ	3µMPAM+ 10nM DEA/NONOate and 4nMPGI ₂
1U/ml Thrombin	90±2%	94±2%	78±5 %	-5±1 %
		+ 10nM		3µMPAM+10nM
% aggregation PRP	Vehicle	DEA/NONOate and 4nMPGI ₂	ЗµМРАМ	DEA/NONOate and 4nMPGI ₂
	Vehicle		3µМРАМ 67±1 %	

Figure 1

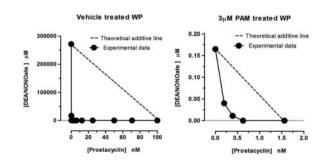


Figure 2

A138

NO and PGI_{2} , suggesting that $P2Y_{12}$ activation may be an important mechanism for haemostasis. In addition, we have demonstrated that the interaction between $P2Y_{12}$ receptors and vascular mediators is strongly synergistic. Potentiation of the effects of endogenous NO and PGI₂ may represent an important mechanism for how $P2Y_{12}$ inhibitors produce anti-thrombotic protection.