epicardial borders were manually drawn and automatically tracked through the cardiac cycle.

Results As shown in the Table, circumferential strain (E_{cc}) was the most reproducible, followed by longitudinal strain (E_{LL}) and radial strain (E_{rr}) . FT-CMR analysis time was 3 ± 1 mins.

Conclusions FT-CMR is highly reproducible within operators, particularly with respect to E_{cc} . This, together with a short time required for analysis, enhances the potential of this imaging modality in clinical practice.

102

THE REPRODUCIBILITY AND ANALYSIS TIME OF CARDIAC MAGNETIC RESONANCE FEATURE TRACKING: POTENTIAL FOR CLINICAL APPLICATION

R J Taylor, F Umar, W E Moody, J Townend, R P Steeds, F Leyva *University Hospital Birmingham*

doi:10.1136/heartjnl-2013-304019.102

Background Myocardial strain imaging has the potential for clinical application in the detection of pre-clinical disease, stress induced myocardial dysfunction and dyssynchrony. Feature-tracking cardio-vascular magnetic resonance (FT-CMR) uses routine CMR imaging (steady-state free-precession imaging) to calculate myocardial strain. **Methods** Healthy volunteers (n=20, age: 42 ± 13 years, 11 (55%) male) underwent a standard protocol CMR. Endocardial and

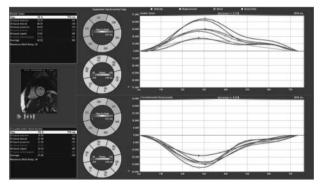


Figure 1

Table 1

Variable	Intra-observer variability CV (%)*	Intra-observer variability ICC**	Inter-observer variability CV (%)*	Inter-observer variability ICC**
Ecc	3.55	0.96 (0.90 to 0.99)	4.95	0.93 (0.81 to 0.97)
ELL	7.68	0.88 (0.72 to 0.96)	5.48	0.98 (0.94 to 0.99)

^{*,} coefficient of variation; **, ICC (95% CI).

A64