		Study		
Cohort	Ethnicity	size		OR (95% CI)
CATHGEN	European ancestry	3021		1.22 (1.10, 1.36)
CDCS	European ancestry	678		0.92 (0.73, 1.16)
China	Han Chinese	1165		1.31 (1.10, 1.55)
Cleveland GB	European ancestry	2471		1.05 (0.93, 1.19)
EmCB	European ancestry	2357		- 1.16 (1.01, 1.34)
Feldkirch/Austria	European ancestry	914		0.88 (0.72, 1.06)
IHCS (replication set)	European ancestry	1014		1.08 (0.90, 1.28)
HCS (sample set)	European ancestry	1748	+ *	1.11 (0.97, 1.28
Japan	Japanese	596		- 1.03 (0.81, 1.30
Korea	Korean	522		0.98 (0.77, 1.25)
MEDSTAR	European ancestry	824		1.19 (0.98, 1.45
Munich/Germany	European ancestry	2028		1.07 (0.91, 1.26
OHGS	European ancestry	1714		······································
PENNCATH	European ancestry	841	-+-	1.02 (0.82, 1.26
SAS	European ancestry	1094		1.02 (0.86, 1.21)
D+L Overall			\diamond	1.10 (1.04, 1.17)
Bayesian Overall			\diamond	1.11 (1.07, 1.17)
NOTE: Weights are from	random effects analysis			
		66		1.5

Figure 1 Association between 9p21 and multi-vessel disease as compared with single-vessel disease (Analysed with allelic Model, D+L Overall=Random effect analysis, Bayesian Overall=Bayesian analysis).

studies, but questions remain on the mechanism of risk, specifically whether the locus contributes to coronary atheroma burden or plaque instability. We investigated the relationship of 9p21 locus with (1) angiographic coronary artery disease (CAD) burden and (2) myocardial infarction (MI) in individuals with underlying CAD. Methods:We established a collaboration of 21 studies consisting of 33,673 subjects with information on both CAD (clinical or angiographic) and MI status along with 9p21 genotype. Tabular data were provided for each cohort on the presence and burden of angiographic CAD; MI cases with underlying CAD; and the diabetic status of all subjects.

Results We first confirmed an association between 9p21 and CAD using angiographically defined cases and controls (pooled OR=1.31 (95% CI 1.20 to 1.43)). Among subjects with angiographic CAD (n=20,987), random-effects model identified an association with multi-vessel CAD, compared to those with single-vessel disease (OR=1.10 (95% CI 1.04 to 1.17) per copy of risk allele). Genotypic models showed an OR of 1.15 (95% CI 1.04 to 1.26) for heterozygous carrier and 1.23 (95% CI 1.08 to 1.39) for homozygous carrier. Finally, there was no significant association between 9p21 and prevalent MI when both cases (n=17 791) and controls (n=15 882) had underlying CAD (OR=0.99 (95% CI 0.95 to 1.03) per risk allele).

Conclusions The 9p21 locus shows convincing association with greater burden of CAD, but not with MI in the presence of underlying CAD. This adds further weight to the hypothesis that 9p21 locus primarily mediates an atherosclerotic phenotype.

126

CHROMOSOME 9P21 LOCUS AND ANGIOGRAPHIC CORONARY ARTERY DISEASE BURDEN: A COLLABORATIVE META-ANALYSIS

K Chan,¹ R S Patel,² P Newcombe,³ C P Nelson,⁴ A Qasim,⁵ S E Epstein,⁵ S Burnett,⁵ V L Vaccarino,⁶ A M Zafari,⁷ S H Shah,⁸ J L Anderson,⁹ J F Carlquist,⁹ J Hartiala,¹⁰ H Allayee,¹⁰ K Hinohara,¹¹ B S Lee,¹² A Erl,¹³ K L Ellis,¹⁴ A Goel,¹⁵ A S Schaefer,¹⁶ N E Mokhtari,¹⁶ B A Goldstein,¹⁷ M A Hlatky,¹⁷ A S Go,¹⁸ G Q Shen, ¹⁹ Y Gong, ²⁰ C Pepine, ²⁰ R C Laxton, ¹ J C Wittaker, ²¹ W H W Tang, ²² J A Johnson,²⁰ Q K Wang,¹⁹ T L Assimes,¹⁷ U Nöthlings,²³ M Farrall,¹⁵ H Watkins,¹⁵ A M Richards, ¹⁴ V A Cameron, ¹⁴ A Muendlein, ²⁴ H Drexel, ²⁴ W Koch, ¹³ J E Park, ¹² A Kimura,¹¹ W F Shen,²⁵ I A Simpson,²⁶ S L Hazen,²² B D Horne,⁹ E R Hauser,⁸ A A Quyyumi,²⁷ M P Reilly,⁵ N J Samani,²⁸ S Ye¹ ¹ William Harvey Research Institute, Barts and the London School of Medicine and Dentistry; ²Research Institute, Barts and the London School of Medicine and Dentistry; ³MRC biostatistics unit; ⁴Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease; ⁵Cardiovascular Institute, the Perelman School of Medicine at the University of Pennsylvania; ⁶Department Epidemiology, Emory University Rollins School of Public Health; ⁷Department Epidemiology, Emory University Rollins School of Public Health; ⁸Center for Human Genetics, Department of Medicine, Duke University; ⁹Intermountain Heart Institute, Intermountain Medical Center; ¹⁰Department of Preventive Medicine, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California; ¹¹Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University; ¹²Division of Cardiology, Samsung Medical Center, Sung Kyun Kwan University School of Medicine; ¹³German Heart Centre Munich; ¹⁴Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago; ¹⁵Wellcome Trust Centre for Human Genetics, University of Oxford; ¹⁶Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel; ¹⁷Department of Medicine, Stanford University of Medicine; ¹⁸Division of Research, Kaiser Permanente; ¹⁹Department of Molecular Cardiology, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic; ²⁰University of Florida, Health Science Center; ²¹London School of Hygiene and Tropical Medicine; ²²The Center for Cardiovascular Diagnostics & Prevention, Cleveland Clinic; ²³Section for Epidemiology, Institute for Experimental Medicine, Christian-Albrechts-University of Kiel; ²⁴Vorarlberg Institute for Vascular Investigation & Treatment; ²⁵Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine; ²⁶Wessex Regional Cardiac Unit, Southampton University Hospital; ²⁷Department of Medicine, Emory University School of Medicine; ²⁸Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital

doi:10.1136/heartjnl-2013-304019.126

Background Chromosome 9p21 variants have been strongly associated with coronary heart disease in genome-wide association

Heart: first published as 10.1136/heartjnl-2013-304019.126 on 24 May 2013. Downloaded from http://heart.bmj.com/ on April 19, 2024 by guest. Protected by copyright