145

AORTIC REGURGITATION AFTER COREVALVE TRANSCATHETER AORTIC VALVE IMPLANTATION (TAVI): ASSESSMENT BY ECHOCARDIOGRAPHY AND CARDIOVASCULAR MAGNETIC RESONANCE

A U Uddin, ¹ T A F Fairbairn, ¹ M M Motwani, ¹ A K Kidambi, ¹ C S Steadman, ² D S Schlosshan, ³ D B Blackman, ³ G M McCann, ² S P Plein, ⁴ J P G Greenwood ⁴ ¹Multidisciplinary Cardiovascular Research Centre & The Division of Cardiovascular and Diabetes Research, LIGHT, Leeds University; ²National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit; ³Department of Cardiology, Leeds Teaching Hospitals NHS Trust; ⁴Multidisciplinary Cardiovascular Research Centre & The Division of Cardiovascular and Diabetes Research, Leeds Institute of Gen

doi:10.1136/heartjnl-2013-304019.145

Background Transcatheter Aortic Valve Implantation (TAVI) is increasingly used to treat patients with severe aortic stenosis at high surgical risk. The severity of post-implantation valvular or paravalvular regurgitation has been shown to adversely affect patient outcome. The aim of the study was to assess the prevalence and severity of aortic regurgitation (AR) at 6 months post-TAVI using cardiovascular magnetic resonance (CMR).

Heart May 2013 Vol 99 Suppl S2

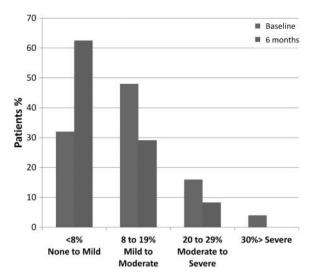
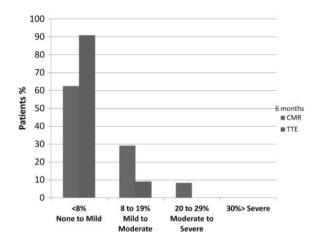



Figure 1 Quantification of aortic regurgitation by CMR phase contrast velocity mapping before and 6 months after TAVI implantation.

 $\begin{tabular}{ll} Figure 2 & Comparison of a ortic regurgitation grading by CMR and transthoracic echocardiograph. \end{tabular}$

Methods 25 severe aortic stenosis patients underwent a 1.5T CMR (Intera, Philips Healthcare) scan at baseline and 6 months after CoreValve™ TAVI. IV function was assessed using cine imaging with a steady state free precession pulse sequence. The IV outflow tract was imaged in two planes and through-plane phase contrast velocity imaging was performed perpendicular to the aortic valve and transverse to the aorta at the sinotubular junction. Post-processing was performed using QMass 7.2 and QFlow 5.2 (Medis, The Netherlands). AR severity was defined using regurgitant fraction (RF) as: none to mild<8%, mild to moderate 8–19%, moderate to severe 20–29% and severe >30%. Transthoracic echocardiography (iE33, Philips Healthcare) was performed at baseline and 6 months follow-up. Aortic regurgitation was graded using a comprehensive integrated approach following the recent Valve Academic Research Consortium (VARC) guidelines.

Results Mean age was 80.6 ± 6.6 years, 44% were female, Logistic EuroSCORE 19.5±14.9 IV ejection fraction significantly improved post-TAVI (52.1±11.8% vs 55.9 ± 9.6 %, p<0.0001) and reduction in indexed end-systolic IV volume (46±18 ml/m² vs 41 ± 17 ml/m², p=0.02). The end-diastolic volume (95±18 ml/m² vs 91 ± 20 ml/m², p=ns) and stroke volume (48±10 ml/m² vs 50 ± 10 ml/m², p=ns) did not change. There was a significant reduction in aortic

RF 6 months post-TAVI (median RF 12.4%, IQR 5.6–16.8% vs 6.2% IQR 3.6 to 13.2%, p=0.034) (figure 1). There was no significant difference between the transthoracic echo grading and CMR grading of aortic regurgitation. ($\chi^2 = 3.74~p=0.159$) (figure 2). Echocardiography showed statistically significant reductions in peak forward flow velocity (4.87±0.57 ms $^{-1}$ vs1.98±0.35 ms $^{-1}$ p<0.05), peak pressure gradient (96.1±24.3 mm Hg vs17±5.7 mm Hg p<0.05) and mean pressure gradient (54.8±15.9 mm Hg vs8±3 mm Hg p<0.05) compared to baseline; the effective orifice area (EOA) was significantly larger compared to the baseline state (0.57±0.03 cm 2 vs 1.63±0.3 cm 2 p<0.05).

Conclusions There was an overall reduction in aortic regurgitant fraction post-TAVI even in the presence of pre-existing AR. CMR can be used in the TAVI population, pre- and post-procedure to quantify the degree of aortic regurgitation.

Funding SP is funded by a British Heart Foundation fellowship (FS/ 10/62/28409). SP and JPG receive an educational research grant from Philips Healthcare.

A86 Heart May 2013 Vol 99 Suppl S2