The origin of symptoms in chronic heart failure

Andrew Clark, MA, MD, FRCP

Reader and Honorary Consultant Cardiologist
Academic Cardiology
Castle Hill Hospital
Castle Road
Cottingham
Hull HU16 5JQ

Email: a.l.clark@hull.ac.uk
Tel: 01482 624012
Abstract
Whilst enormous strides have been made in the management of chronic heart failure, the origin of the symptoms of breathlessness and fatigue in well treated stable patients remains mysterious. Haemodynamic models of heart failure do not fit the observation that some patients with very severe left ventricular dysfunction have near normal exercise capacity.

Skeletal muscle abnormalities are highly prevalent in chronic heart failure and are associated with an increase in the ergoreflex, a muscle reflex stimulated by work done. Stimulation of the ergoreflex results in increased ventilation, and also contributes to the increased sympathetic activation of the heart failure syndrome. The origin of the skeletal myopathy is related to chronic imbalance between catabolic and anabolic processes, presumably as a consequence of chronic haemodynamic stress.

Symptoms arise from the skeletal myopathy, causing the sensation of fatigue, and contributing to the sensation of breathlessness as the myopathy affects respiratory muscle. The ergoreflex activation causes a greater ventilatory response to exercise than normal, contributing to the sensation of breathlessness.

Key words:
chronic heart failure – metabolic gas exchange – breathlessness – ergoreflex – fatigue
In order to be diagnosed as having chronic heart failure, an individual has to have symptoms compatible with the diagnosis. In the absence of symptoms, the patient has “asymptomatic left ventricular dysfunction” and one of the surprising features of chronic heart failure due to systolic left ventricular dysfunction at least, is that patients with apparently very poor left ventricular (LV) function can have very little in the way of symptoms, and others with only apparently minor degrees of LV dysfunction can be highly asymptomatic.

The dominant symptoms of chronic heart failure are breathlessness and fatigue on exertion. A traditional view of the pathophysiology of the symptoms runs as follows (figure 1): firstly, the failing heart has an impaired response to exercise. In turn, this leads to failure to perfuse the exercising muscle adequately; the unhappy skeletal muscle signals the brain, and this sensation is interpreted as fatigue. Secondly, the failing heart requires an ever higher left ventricular filling pressure to maintain output, particularly during exertion; the filling pressure can rise high enough to cause either stiff lungs or even transudation of fluid into the alveoli; and this causes breathlessness.

This sort of model suggests that there will be two groups of patients with different exertional responses. However, we found that regardless of the symptom experienced by the patient, the metabolic and ventilatory responses to exercise were the same, suggesting a unifying underlying explanation for the generation of symptoms. The patient interprets the symptoms as breathlessness or fatigue variably: for example, more rapidly incremental tests are likely to be terminated by breathlessness, whereas a slower test, although eliciting the same exercise performance, is more likely to be terminated by fatigue. Cycle exercise is more often stopped by fatigue than breathlessness compared with treadmill exercise, even when the same level of exercise is performed.

Measuring exercise

Symptoms of their nature are subjective. A variety of scores has been used with the New York Heart Association classification of symptoms being near-universally used in describing heart failure patients. For symptoms during exercise testing, some version of the linear Borg scale is most commonly used.

To get an objective measurement of exercise performance, some form of exercise testing is necessary. Corridor walk tests, particularly the six minute walk test, are commonly used and are cheap and simple to administer. However, to explore the pathophysiology of exercise limitation in greater detail, incremental testing with metabolic gas exchange measurement in most useful. A subject exercises to exhaustion, breathing through a tight-fitting mask or mouthpiece, and the expired air is collected and analysed. Several variables are derived, including:

- Peak oxygen consumption (peak VO₂), that is, the maximum rate of oxygen consumption achieved, used as an index of exercise performance
• The slope of the relation between ventilation and carbon dioxide production (VE/VCO₂ slope) as an index of the ventilatory response to exercise
• The respiratory exchange ratio (the ratio between carbon dioxide production and oxygen consumption; VCO₂/VO₂)

The peak oxygen consumption is an artificial variable in that very few patients are challenged by the need to perform maximal exercise in daily life, yet it is reproducible, highly predictive of survival and useful in selecting those patients with most to gain from heart transplantation.⁵

The VE/VCO₂ slope is highly linear, and the slope is increased with increasing severity of heart failure; that is, for any given level of carbon dioxide production, the ventilatory response is increased with worsening heart failure symptoms (figure 2). Peak VO₂ and the VE/VCO₂ slope are negatively correlated with each other.⁶

The RER is an index of how “maximal” the test has been: at rest, RER is around 0.7, and rises during exertion to greater than 1.0. In normal subjects, RER can rise to 1.4 or higher, but in practice, a value of over 1.05 is taken to indicate maximal exertion.

Central haemodynamics
If the haemodynamic model is correct, then there should be some relation between cardiac performance and exercise performance. However, this is not the case. Many studies have shown that there is no correlation between indices of cardiac function at rest and exercise performance.⁷ ⁸ More tellingly, acute changes in haemodynamics, either pharmacological⁹ or by cardiac transplantation,¹⁰ do not affect exercise performance.

In normal subjects, peak exercise performance does seem to be related to peak cardiac output. However, in heart failure patients this does not seem to be the case. A key observation is that during maximal leg exercise, if an additional arm exercise load is imposed, then in heart failure patients (in contrast to normal subjects) oxygen consumption (and cardiac output) increases further.¹¹

Some work has implicated the pulmonary circulation in limiting exercise including pulmonary vascular resistance and pulmonary artery wedge pressure.¹² Right ventricular ejection fraction has been proposed as a potential limiting factor, but we found that even in a group of patients with the Fontan circulation (thus having no right ventricular contribution to the circulation at all) exercise performance could be normal, and the that the negative relation between peak VO₂ and the VE/VCO₂ slope was still present.⁸

The lungs
Much attention has focussed on the lungs as a possible source of symptoms. The increase in the VE/VCO₂ slope is present from the outset of exercise, and implies that there may be some abnormality in the lungs responsible. The ratio
between ventilation and carbon dioxide production is described by the equation

\[
\frac{V_E}{V_{CO_2}} = \frac{863}{P_{aCO_2}} \times (1 - \frac{V_D}{V_T})
\]

where 863 is a constant, \(P_{aCO_2}\) is the arterial tension of carbon dioxide and \(V_D/V_T\) is dead space as a fraction of tidal volume.

Most studies of chronic heart failure patients have shown that the arterial carbon dioxide tension is, if anything, decreased compared with normal,\(^{13}\) implying that the increase in \(V_E/V_{CO_2}\) slope must be due to an increase in dead space ventilation.\(^{14}\) How might this arise? Dead space represents alveoli that are ventilated, but not perfused, and it might be that the failing heart causes some difficulty with lung perfusion. There are abnormalities of lung function in many patients as assessed by spirometry, and more severely symptomatic patients have impaired diffusion at the level of the alveolar-capillary membrane.\(^{15}\)

Against this notion, we have shown that although \(V_D/V_T\) was higher at submaximal exertion in patients than controls (although lower than at rest), absolute dead space ventilation was higher at peak exercise in controls than patients, as was absolute dead space per breath (measured in litres, not as a fraction of tidal volume).\(^{16}\) A further observation is that perfusion to the lung apices appears to be increased in heart failure patients at rest and doesn’t change with exertion.\(^{17}\) Additionally, the potential signal being detected by the respiratory centre and increasing ventilation has to be considered. There is no “dead space receptor” and blood gas tensions are normal or supra-normal in exercising heart failure patients.\(^{13}\) Indeed, the more limited the patient in terms of increased \(V_E/V_{CO_2}\) slope and reduced peak \(V_O_2\), the lower is the \(P_{aCO_2}\) at peak exercise.\(^{16}\)

These findings cannot exclude the possibility that there is some abnormality in the oscillation of blood gas tensions, perhaps, that is sensed, but do suggest that it is not the lungs causing exercise limitation. It is even possible that some of the lung abnormalities might be a response to an excessive ventilatory stimulus arising elsewhere. If there were such a stimulus, then the effect might be to drive \(P_{aCO_2}\) too low. Perhaps the rise in dead space might be to prevent this happening.

Skeletal muscle

Where then could the ventilatory stimulus be arising? Skeletal muscle is abnormal in heart failure patients from an early stage in the progression of the disease. There is loss of muscle bulk, and exercise capacity is related to both muscle strength and bulk.\(^{18}\) Muscle strength is reduced,\(^{19}\) as is endurance.\(^{20}\) From the patient's point of view, the ability to perform repeated submaximal exercise is more important than peak force generation, and early quadriceps fatiguability has been reported.\(^{20}\) The reduction in endurance correlates with exercise performance.
Fatigue is independent of acute changes in blood flow and of central factors. Fatiguability has been shown in a very small muscle group in which blood flow is most unlikely to be limited by cardiac reserve, suggesting that intrinsic muscle factors mediate fatigue.

Skeletal muscle is histologically abnormal with a shift towards type II muscle fibres. (Type II fibres are fast twitch, anaerobic fibres). Mitochondrial structure is abnormal, with a reduction in volume of the cristae, and there are reductions in enzyme content, particularly of the enzymes of the Kreb's cycle and in the oxidative chain. The changes in muscle structure and ultrastructure are reflected in changes in muscle metabolism. Magnetic resonance spectroscopy can be used to examine intracellular phosphate metabolism, which has been shown to be abnormal in chronic heart failure with more rapid depletion of phosphocreatine and early acidosis compared with normals.

It is easy to picture how these abnormalities can lead to the sensation of fatigue. Breathlessness might arise from similar changes seen in the muscles of respiration, but this does not explain the increase in the Ve/VCO2 slope. Abnormal skeletal muscle signalling does, however, present a unifying hypothesis, and also helps explain other features of the heart failure syndrome.

The ergoreflex

The ergoreceptors are muscle receptors sensitive to work performed. Their stimulation during exercise results in increased ventilation and sympathetic activation (the ergoreflex). The stimulus is in part sensitive to work performed per unit muscle mass. This effect can be seen in normal subjects, where the Ve/VCO2 slope is considerably greater when arms are used compared to legs to perform the same external workload.

Piepoli and colleagues showed how these receptors were more active in heart failure patients and that the increased ventilatory response to exercise was proportional to the ergoreflex activity (see figure 3). The signal is due to metabolic stimulation of receptors rather than being merely a response due to movement. Possible stimuli for initiating the ergoreflex include local release of prostaglandins, potassium and hydrogen ion. The ergoreflex is a potential target for therapy, and not just an abstract conception: Piepoli further showed that the ergoreflex contribution to ventilation could be reduced by exercise training.

A unifying hypothesis, then, is that skeletal muscle becomes abnormal in chronic heart failure. In turn, this leads to abnormal muscle performance during exercise, objectively seen as reduced strength and endurance, and subjectively felt as the sensation of fatigue. The abnormal muscle is the cause of an enhanced ergoreflex response to exercise, which causes an excessive ventilatory response, seen objectively as an increase in the Ve/VCO2 slope, and interpreted subjectively as the sensation of breathlessness.
This explanation for the pathophysiology of symptom generation in heart failure is that it ties together the two principle symptoms of heart failure and also gives an explanation for other aspects of the heart failure state. For example, the sympathetic activation which is such a prominent feature of heart failure, is commonly supposed to be due to increased baroreflex activity in response to falls in blood pressure. In fact, baroreflex activity is reduced in chronic heart failure. Stimulation of the ergoreflex, however, causes sympathetic activation. Chronic overactivity of the ergoreflex might be responsible both for chronic sympathetic activation and the down-regulation of the baroreceptors.

Origins of muscle changes
The skeletal muscle changes must ultimately be related to heart failure itself, and the obvious candidate is decreased peripheral perfusion. The oxygen saturation in veins draining exercising muscle of heart failure patients can be very low indeed, suggesting that muscular exercise is limited by the failure of the circulation to deliver oxygen to the tissues rather than failure of the tissues to extract oxygen.

The peripheral resistance is greatly increased in heart failure patients, but the relation between blood flow and exercise capacity is complex. Acute changes in blood flow induce no change in lactate production at matched workload, highlighting the possible distinction between “nutritive flow” and mere blood flow. Some patients have normal blood flow, but abnormal metabolism.

Although some of the changes of chronic heart failure are similar to the effects of de-training in normal subjects, disuse is unlikely to be the only contributor to muscle changes. In normals undergoing de-training, there is little evidence of the fibre-type shift seen in heart failure, and as the heart failure muscle changes are seen in small muscles unlikely to be affected by disuse, there is likely to be a systemic cause for the heart failure myopathy.

Anabolic-catabolic imbalance in chronic heart failure
Far from being just a “haemodynamic” disease, heart failure is increasingly recognised to be a multisystem disease with changes in most body systems studied. Cardiac cachexia has been recognised since the time of Hippocrates, and has latterly been shown to be associated with a particularly poor outcome. As previously noted, loss of muscle bulk happens early in the course of heart failure and, indeed, excess weight is associated with improved survival. Weight loss affects all body compartments: lean tissue, fat and bone.

The cause of weight loss is not known, but there is a general change in the balance between catabolic and anabolic factors in the chronic heart failure syndrome. Thus, for example, mass sympathetic stimulation (as seen in heart failure) is catabolic, causes an increase in the basal metabolic rate, causes glycogenolysis, both through a direct effect and via inhibition of insulin secretion and promotion of glucagon secretion, and lipolysis.
Insulin is a vital anabolic hormone, and insulin resistance is common in heart failure patients. The insulin resistance is characterised by high circulating levels of insulin, and normal fasting glucose. Insulin levels are higher in heart failure patients with cachexia than in those without, and body mass index is related to the degree of insulin resistance. Similarly, the catabolic steroid cortisol can be grossly elevated in untreated patients with chronic heart failure, and the anabolic steroid precursor, DHEA is low. There is thus a rise in the ratio of cortisol to DHEA in chronic heart failure patients, which correlates negatively with body mass index (the higher the BMI, the lower the ratio of catabolic to anabolic steroid).

Growth hormone resistance is also common in chronic heart failure: patients (particularly with untreated fluid retention) have high levels of circulating growth hormone, but relatively low levels of its effector hormone, insulin-like growth factor 1 (IGF-1).

The cause of the shift in anabolic-catabolic balance is not clear, but is perhaps due to continuous, low-grade haemodynamic stress. In common with most mammals, one of the primary evolutionary demands on humans was to respond to acute stress from the environment. In response to haemorrhage, for example, there is short-lived sympathetic stimulation, renin-angiotensin system activation and vasopressin release; catabolism predominates with lipolysis and glycogenolysis releasing energetic substrate. In contrast, in periods of rest, anabolism predominates with storage and repair more active.

Chronic heart failure represents a chronic, low-grade environmental threat. It results in a chronic shift from anabolic processes to catabolic processes. This is seen as, for example, an increase in the basal metabolic rate of heart failure patients. As the condition, and the stress, endure, so muscle performance worsens, thus resulting in symptoms of breathlessness and fatigue (figure 4).

Therapeutic implications

Many of the pharmacological treatments used in chronic heart failure treatment have limited effect on symptoms whilst improving prognosis. It is interesting to note, however, that both angiotensin converting enzyme inhibitors and β-adrenoceptor antagonists are associated with weight gain, or at least delay in weight loss. Interrupting the chronic stress response thus seems to allow some anabolism to take place. These effects are probably mostly at the level of fat, and will have little direct bearing on symptoms.

It will be interesting to see the results of studies examining the effects of device therapy, particularly biventricular pacing, on the ergoreflex and peripheral muscle, as well as on the VE/VCO₂ slope.

Exercise training, however, does offer the possibility of improving symptoms. Despite very severe left ventricular dysfunction, some patients have normal exercise responses and no symptoms, and the key things that differentiate these patients from their symptomatic peers is better preservation of leg muscle strength, bulk and blood flow. Exercise training reduces ergoreflex activation and reduces the ventilatory response to exercise, as well as
having numerous other benefits, such as a reduction in sympathetic activation and improved endothelial function. Meta analysis of the available data suggests that training regimes also probably improve prognosis. As yet, a comprehensive way to incorporate training packages into the routine care of patients with chronic heart failure has yet to be devised.
Figure legends

Figure 1. A haemodynamic model to explain heart failure symptoms.

Figure 2. The VE/VCO_2 slope in heart failure. Note that the relation between ventilation (Ve) and carbon dioxide production (VCO_2) remains linear, but that the slope increases with worsening heart failure. Thus, for a VCO_2 of 1 L.min$^{-1}$, a normal subject has to ventilate at 22 L.min$^{-1}$, the patient with moderate heart failure ventilates at 42 L.min$^{-1}$.

Figure 3. The ergoreflex in chronic heart failure. Handgrip dynamometer exercise to exhaustion finishes at the beginning of the shaded panel. A cuff is either inflated around the exercising arm at peak exercise (filled symbols, solid line) or not (open symbols, dotted line). The cuff is deflated after three minutes (end of shaded panel).

Note that the heart failure patients have a greater ventilatory response to exercise, and that there ventilatory response is maintained at the same level as maximal exertion throughout the period of cuff inflation.

From: Piepoli M, Clark AL, Volterrani M, Adamopoulos S, Sleight P, Coats AJ. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation1996;93:940-52 Figure 3, top panel.

Figure 4. Origin of symptoms of chronic heart failure. Left ventricular impairment is a chronic stressor causing catabolic processes to predominate over anabolic. This leads to a skeletal myopathy, which generates fatigue, and in as much as it involves respiratory muscle, breathlessness. The myopathy causes enhanced ergoreflex activity, which in turn causes the increased Ve/VCO_2 slope, itself a cause of breathlessness. The ergoreflex activation also results in sympathetic activation, perhaps feeding back to worsen left ventricular function.
References

1 Harrington D, Anker SD, Coats AJ. Preservation of exercise capacity and lack of peripheral changes in asymptomatic patients with severely impaired left ventricular function. *Eur Heart J* 2001;22:392-9

4 Ingle L, Shelton RJ, Rigby AS, Nabb S, Clark AL, Cleland JG. The reproducibility and sensitivity of the 6-min walk test in elderly patients with chronic heart failure. *Eur Heart J* 2005 Apr 14; [Epub ahead of print]

6 Buller NP, Poole-Wilson PA. Mechanism of the increased ventilatory response to exercise in patients with chronic heart failure. *Br Heart J* 1990;63:281-283

Heart failure

Exercise

- Inadequate rise in cardiac output
 - Failure of muscle perfusion
 - Fatigue
- Cardiac output maintained by ↑ filling pressure
 - Stiff/wet lungs
 - Breathlessness

Figure 1
Normal subject
slope = 20.8

Moderate HF
slope = 40.7

Mild HF
slope = 30.6

VCO2

Ventilation

Figure 2
Chronic left ventricular dysfunction

Chronic "stress"

Growth hormone:IGF, DHEA: cortisol
Insulin resistance
Sympathetic activation
RAS activation

Catabolic: anabolic imbalance

Catabolism
Anabolism

Skeletal muscle myopathy
Respiratory muscle myopathy

Ergoreflex activation

↓ peak VO₂
Fatigue
Breathlessness

Sympathetic activation

↑ VE/VCO₂ slope