Percutaneous valve repair and replacement techniques

Brad Munt MD FRCPC
John Webb MD FRCPC

St. Paul’s Hospital, Vancouver, British Columbia, Canada

Address for correspondence: Brad Munt MD, St. Paul’s Hospital, 2350-1081 Burrard Street, Vancouver, B.C., Canada, V6Z 1Y6. bmunt@providencehealth.bc.ca
Phone: 604 806 8018.
Fax: 604 806 8410.
Valvular heart disease is a significant cause of morbidity and mortality. The prevalence of significant (moderate or severe) valve disease in westernized populations is estimated at about 1.8% of the total population. However, rates increase with age, and the prevalence will increase as the population ages (1) (table 1).

Currently accepted interventional therapy for mitral regurgitation (MR), aortic stenosis (AS) and aortic regurgitation (AR) consists of surgical valve repair or replacement, while mitral stenosis (MS) in properly selected patients seems to have equivalent outcomes with percutaneous or surgical techniques (2). The percentage of cases of cardiovascular surgery involving an aortic or mitral valve procedure has increased from 14% of cases in 1995 to 21% of cases in 2003 in the Society of Thoracic Surgeons database (3). This occurred presumably due to increasing application of percutaneous revascularization, an increasing prevalence of valvular disease and perhaps an increased recognition of the role of surgery for valvular disease. A similar trend is seen in British Columbia, Canada, with 27% of cases involving a valve procedure in 1992, increasing to 32% in 2002.

While valve surgery can have low operative morbidity and mortality in selected patient groups, co-morbidities often associated with aging, age itself and re-do surgery are independent risk factors for adverse outcome with surgical valvular procedures (4). Traditional valve surgery through a mid line sternotomy is burdened by concerns with respect to hospital stay, postoperative pain and prolonged recovery. In recognition of this, minimally invasive, including robotic surgery techniques are being developed and optimized (5, 6). However, the vast majority of procedures continue to be performed by traditional techniques (3).

All of these factors have lead to an interest in expanding percutaneous valve repair and replacement techniques to more lesions in more patients. The role of percutaneous techniques in treatment of the pulmonary valve has been recently reviewed (7), and will not be discussed further. The goal of this review is to explore the current state of the art in percutaneous valve repair and replacement techniques in MS, MR, AS, AR in adults, outline the future directions, and explore some issues we feel need addressing for the techniques to flourish.

Mitral Stenosis

Percutaneous commisurotomy for native valve mitral stenosis (in valves with commissural fusion) has by far the longest track record and most clinical experience of all percutaneous valve repair techniques. In properly selected individuals, clinical success rates (defined as a doubling of mitral valve area from baseline, or increase to at least 1.5 cm² without production of moderate or severe mitral regurgitation or other significant complications) is 85 to 99% depending on patient selection (table 2) (8). Techniques described include single (including the dumbbell shaped Inoue) and double balloon methods and rigid mechanical devices. The balloons are intended for single use; the prevalence of rheumatic disease in developing countries whose economic profile precludes widespread use of relatively expensive disposable balloons was the impetus for
development of the mechanical devices. Multiple randomized trials have demonstrated that percutaneous techniques have equivalent outcomes to surgery in terms of acute results, durability of results, and complications (2, 9).

At our center, we prefer the Inoue single balloon technique. After the balloon is advanced across the atrial septum (via a transseptal puncture), it is manipulated across the mitral valve. The balloon design allows initial inflation of the distal portion of the balloon that can then be pulled back snug against the ventricular aspect of the mitral valve. Further inflation of the balloon results in inflation of the most proximal chamber that fixes the balloon in position. Lastly, the middle compartment inflates resulting in the augmentation of the valve orifice by commissural splitting. We currently performed the entire procedure under transesophageal (TEE) and fluoroscopic guidance. Other centers perform the procedure with TTE guidance, however, we find that TEE allows continuous imaging without interference with fluoroscopy, and we believe TEE allows for a safer transseptal puncture than blind or TTE guided techniques (10, 11). TEE also allows echocardiographic monitoring of balloon position as it is advanced into the left ventricle and pulled back. Recently intra-cardiac echo (ICE) has been utilized (12). Although imaging of the transeptal puncture and mitral valve may be less optimal with ICE or TTE than with TEE, there is no requirement for endotracheal intubation or general anesthetic.

We perform the procedure in the cardiac catheterization laboratory with the patient under general anesthesia, intubated and ventilated. The procedure takes approximately an hour. Patients are typically admitted the day of the procedure and discharged the following morning. Multiple balloon inflations are usually performed until mild to moderate MR is produced or the maximum balloon diameter is reached.

Percutaneous mitral valvuloplasty is only applicable to patients with valve lesions that involve commissural fusion. Since a significant proportion of the mitral stenosis seen in older patients in developed countries results from mitral annular calcification, current techniques will not benefit all of these patients.

Mitral regurgitation

Given the prevalence of MR, and recent observations that even mild MR is associated with an adverse prognosis (13), attention has been turned to development of percutaneous techniques to repair the mitral valve. Most percutaneous techniques to treat MR involve repair, and fall into one of two general categories, mitral annulus reshaping techniques (including annuloplasty techniques often using the coronary sinus due to its close proximity to the mitral annulus, so called sinoplasty) and methods to affect an edge-to-edge repair after the surgical approach popularized by Alfieri (14). While valve surgery can have low operative morbidity and mortality in selected patient groups (15), co-morbidities often associated with aging, age itself and re-do surgery are independent risk factors for adverse outcome with surgical valvular procedures (4). Traditional valve surgery also usually involves a mid line sternotomy with the attendant hospital stay and postoperative pain and recovery time. In recognition of this, minimally invasive,
including robotic surgery techniques are being developed and optimized (5, 6), however the vast majority of procedures continue to be performed by traditional techniques, and the most commonly used procedure is annuloplasty alone (3).

All of these factors have lead to an interest in expanding percutaneous valve repair and replacement techniques to more lesions in more patients. We characterize the etiology of MR as structural (gross morphological structural abnormalities of the mitral valve leaflets, chordae, papillary muscles or significant mitral annular calcification) or functional (no structural abnormalities as noted above and left ventricular geometry leading to disruption of the relationship among the mitral apparatus components and a mild degree of mitral annular dilation). Edge-to-edge techniques are thought to be most useful for structural disease of middle scallop (A2, P2 or both) prolapse or functional MR with a central jet and not severe mitral annular dilation. Mitral annulus remodeling techniques would be predicted to work best in functional MR in cases when mitral annular dilation is the dominant pathology.

Multiple devices for mitral annulus remodeling are under development, including devices by Mitralign, Cardiac Dimensions, Mitralife (eV3), Viacor and QuantumCor and Edwards Lifesciences (16) (17) (18).

The Mitralign (16) device performs a modified suture annuloplasty by using magnets placed in the coronary sinus and left ventricle to place specialized guide wires in the P1, P2 and P3 zones of the annulus. Specialized anchors are placed at these locations and plicated together to produce a 2 to 3 cm reduction in posterior annular circumference. The Viacor device is based on placing a multi-lumen delivery catheter into the coronary sinus, and then introducing one or more nitinol treatment devices into the lumens to reshape the annulus (17).

We have had experience with the Edwards Viking device (Edwards Lifesciences, Irvine, CA). This device consists of a proximal and distal self-expanding stent connected by a strut. The strut consists of a spring with an absorbable suture holding the spring in a partially open position. After careful pre-procedure measurement of the coronary sinus diameters and length, the device is placed into the coronary sinus in an introducer, the distal stent is deployed by extruding the device out of the introducer, it becomes fixed in place by the radial force the stent applies on the coronary sinus wall. The remainder of the device is then deployed, with placement of the proximal stent in the proximal coronary sinus. Over a period of weeks, the suture dissolves, allowing the spring to compress, and because the proximal and distal stents are fixed, the annulus size is reduced leading to a reduction in MR. Animal work has indicated the approach achieves a 25% reduction in mitral septal to lateral dimension in animal models (19). We have implanted four devices, and MR severity has decreased when the device is intact. However, a problem has developed with the spring detaching from the proximal stent and redesign of the device is underway.

The Coapsys (Myocor Inc., Maple Grove, MN) device consists of anterior and posterior pads that are placed on the epicardial surface of the heart connected by a subvalvular cord. The device can be tightened to reduce the left ventricular epicardial to epicardial dimension. Animal models show a reduction in functional MR (20).

Reported experience in humans with all of the above techniques is small, and the immediate success rates, durability of the repair and complication rates are unknown.
The second group of techniques affects an edge-to-edge (Alfieri) repair of the mitral valve. These techniques gain access to the left atrium via a transseptal puncture. The most experience is with the Evalve clip (Evalve Inc. Redwood City, CA). Preliminary results of the EVEREST trial have been presented in abstract form. In 27 patients (out of a planned enrollment of 32) who have received the percutaneous clip, no deaths have occurred, and the adverse events have been one minor stroke and three clip detachments. In all cases, the clip remained attached to one of the valve leaflets and all patients were asymptomatic, the detachment being identified on protocol-driven echocardiography. More than two thirds of the patients achieved a reduction in mitral regurgitation to < 2+ at the time of hospital discharge (21).

Retrospective analysis of the cases have indicated that success is more likely when the flail segment prolapses less than 10 mm beyond the mitral annular plane in myxomatous disease, and there is greater than 2 mm of mitral leaflet available for grabbing in functional MR. The randomized EVEREST II trial is underway.

We have had animal and a single human experience with the Edwards Milano II device. This device uses a suction port to capture a mitral valve leaflet, places a stitch through the leaflet, the device is then rotated 180 degrees and the procedure repeated. Due to the needle and suture configuration, once the stitches are placed, as the device is pulled out the needles are exteriorized, a loop of suture is left on the ventricular side of the mitral leaflets, with long tails of both end of the sutures outside the body. A clip is advanced down the suture tails with a special pusher and tightened up against the mitral leaflets affecting the edge-to-edge repair. Experience in pigs with normal mitral valve leaflets has been promising, and has identified the difficulties with current echocardiographic and fluoroscopic techniques to position the device and confirm capture of the leaflets. In our single human experience so far, a patient with isolated P2 prolapse we had difficulty positioning the device in the middle of the mitral valve resulting in capture of P1 and A1 (instead of P2 and A2) and no reduction in the MR severity, so the “bail out” capability of the device was used and no suture placed.

In our experience, we have identified a number of issues while performing percutaneous edge-to-edge mitral valve repairs we believe require solving for the technique to achieve its full potential. Echocardiographic imaging is difficult, due to multiple factors including acoustic shadowing off the devices, the tomographic nature of two-dimensional imaging, and the need to rapidly confirm the orientation of the devices to the moving mitral valve structures in multiple planes. As well, no standard terminology exists for communicating between the echocardiographer and the interventionalist. For instance, “move the device anteriorly” may mean move the device towards the anterior commissure to some people, towards segment A2 of the anterior mitral valve leaflet to another, and towards the sternum of the patient to another. We believe this later problem should be addressed by international cooperation in developing standard nomenclature and protocols for imaging support of percutaneous valve procedures.

Real time, four-dimensional echocardiography, once available by the TEE or intracardiac approach we believe will greatly aid in the echocardiographic imaging. Device manufactures should work closely with echocardiographers and echocardiographic equipment manufactures throughout design of their devices to include “echocardiographic friendly” features to allow rapid identification of important landmarks on the devices used in positioning. Lastly, but perhaps most importantly, it is
imperative that physicians involved in all aspects of device development insist on properly conducted clinical trials to assure the safety and efficacy of these devices against current clinical gold standards of care. Mitral valve repair for patients with eccentric jets, 3 or less segments prolapsing, and no severe annular pathology (dilation > 50 mm or significant mitral annular calcification) can be performed almost 100% of the time (22, 23), with very low mortality and morbidity and excellent long term results (especially for isolated posterior leaflet prolapse). Percutaneous techniques will need to be well developed prior to becoming an alternative to surgery in these patients. At the same time, a percutaneous approach for patients who are not candidates for surgery or chose this approach after being fully informed of the options is well worth pursuing.

Aortic stenosis

Aortic valve replacement in symptomatic patients with aortic stenosis results in excellent symptom relief and long-term survival in the majority of patients (24). However, our clinical experience tells us that a growing number of patients are poor surgical candidates due to advanced age, comorbidities, and previous cardiac surgery. Attempts to offer therapy to these patients with balloon aortic valvuloplasty was disappointing, as a durable increase in aortic valve area could not be achieved (25). However, experience with inflating the balloon across the often heavily calcified, stenotic aortic valves did teach us that the balloon could most often be inflated to a significant size indicating that the valve could be stretched but rapid elastic recoil lead to the loss of valve area, and few clinically significant embolic events occurred.

Percutaneous aortic valves have been developed, and growing experience is accumulating in humans. The most experience, including our own is with modifications of the Cribier valve, now developed by Edwards Lifesciences (Irvine, CA). Data from the Initial Registry of Endovascular Implantation of Valves in Europe (I-REVIVE) trial in 10 patients show increase in the aortic valve area and decrease in mean transvalvular gradient from pre-procedure values of 0.63 +/- 0.04 cm² and 45.8 +/- 4.5 mm Hg to 1.63 +/- 0.07 cm² and 10.5 +/- 0.8 mm Hg at day 30 (26).

The valve consists of a balloon expandable stent with equine pericardial leaflets. The valve is available in 23 and 26 mm diameters requiring insertion through a 22 or 24 French sheath respectively. Excellent hemodynamics and durability have been demonstrated in pulse duplicator simulations.

Initially both antegrade (via a transseptal puncture) and retrograde approaches were being used. However, three months after the launch of the first US clinical feasibility trial of the percutaneous aortic valve, the antegrade approach was suspended due to the technical complexity of delivering the valve an unacceptable complication rate (27).

We use a retrograde approach and refined the delivery system, and have not found the same rate of complications. The retrograde approach involves delivering the device directly to the aortic valve, avoiding potential guide wire injury to the mitral valve. Smaller catheters are used to enable access through the femoral arteries. To get the bulky stent around the aortic arch and through the valve a special catheter has been developed to steer around the aortic arch and through the aortic valve. So far, we have reported in abstract form retrograde aortic percutaneous valve implantation procedures in 14 patients, of whom 12 were still alive (27). All patients were nonsurgical candidates. Access site
complications are common in a procedure that depends on arterial rather than venous access, and we have observed access site complications in two patients. The femoral access also necessitates removal of the introducer device under direct vision by a surgeon to repair the artery. Post-procedure peri-valvular aortic regurgitation is common, but in our experience with a valve stent size correctly matched to the aortic annulus size, the regurgitation will be at most mild. It should be noted that due to the crescent shaped origin of the AR, quantitation by standard echocardiographic techniques can be challenging and regurgitant volume based approaches using stroke volumes at the left ventricular outflow tract and mitral annulus should be used where possible. This appears to be another area in percutaneous valve issues where four-dimensional echocardiography may prove useful. Despite these limitations, we believe the retrograde approach will become the procedure of choice for percutaneous aortic valve replacement in the future, because it is less demanding technically than the antegrade approach and entails no risk to the mitral valve.

Aortic regurgitation

Besides the lack of leaflet calcification to guide valve placement, and provided that an adequate size valve is available, there is no reason that percutaneous aortic valve replacement for AR should differ much from that performed for AS. Animal data indicates that percutaneous aortic valve replacement for aortic regurgitation is possible.

Conclusions

Valvular heart disease is a significant cause of morbidity and mortality, the prevalence of significant (moderate or severe) valve disease in westernized populations is estimated at about 1.8 % of the total population, and is increasing as the population ages (1). While traditional valve surgery can have low operative morbidity and mortality in selected patient groups (15), co-morbidities often associated with aging, age itself and re-do surgery are independent risk factors for adverse outcome with surgical valvular procedures (4). These factors have lead to an interest in expanding percutaneous valve repair and replacement techniques to more lesions in more patients. Therapy of MS with percutaneous commisurotomy in properly selected patients has outcomes equivalent to traditional surgical procedures and is clinically indicated (2). Most techniques to treat MR involve repair, and fall into one of two general categories, mitral annulus reshaping techniques or methods to affect an edge-to-edge repair after the surgical approach popularized by Alfieri (14) (18). Preliminary data in humans appears promising with both techniques. In our experience, we have identified a number of issues while performing percutaneous mitral valve repairs we believe require solving for the technique to achieve its full potential. Echocardiographic imaging is difficult, and no standard terminology exists for communicating between the echocardiographer and the interventionalist.
Percutaneous aortic valves have been developed, and growing experience is accumulating in humans. The most experience, including our own is with modifications of the Cribier valve, now be developed by Edwards Lifesciences (Irvine, CA). Data from the I-REVIVE trial demonstrates a good hemodynamic result (26). A retrograde approach using a refined the delivery system seems to be the preferred method of implantation (27).

Lastly, but perhaps most importantly, it is imperative that all physicians involved in all aspects of device development and clinical use insist on properly conducted clinical trials to assure the safety and efficacy of percutaneous techniques against current clinical gold standards of care to produce the best outcome of this promising clinical area.

Table 1.

Population prevalence of moderate or severe mitral and aortic valve lesions (1).

<table>
<thead>
<tr>
<th>Valve lesion</th>
<th>Prevalence age 64 to 74 years</th>
<th>Prevalence age 75 years and older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral regurgitation</td>
<td>2.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Aortic stenosis</td>
<td>1.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Aortic regurgitation</td>
<td>0.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Mitral stenosis</td>
<td>0.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 2.

Complications following percutaneous mitral commisurotomy (8).

<table>
<thead>
<tr>
<th>Complication</th>
<th>Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>0 % to 3 %</td>
</tr>
<tr>
<td>Hemopericardium</td>
<td>0.5 % to 12 %</td>
</tr>
<tr>
<td>Embolism</td>
<td>0.5 % to 5 %</td>
</tr>
<tr>
<td>Severe mitral regurgitation</td>
<td>2 % to 10 %</td>
</tr>
<tr>
<td>Urgent surgery</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Interatrial shunt</td>
<td>40 % to 80 %</td>
</tr>
</tbody>
</table>

Competing interest statement: Brad Munt and John Webb are consultants to Edwards Lifesciences.
27. Wood S. Percutaneous aortic valve trials on hold, pending permission to alter device, technique. In; 2005 Downloaded 21 September at www.theheart.org.
Percutaneous valve repair and replacement techniques

Brad Munt and John G. Webb

Heart published online December 9, 2005

Updated information and services can be found at:
http://heart.bmj.com/content/early/2005/12/09/hrt.2005.067371.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Drugs: cardiovascular system (8842)
- Interventional cardiology (2933)
- Epidemiology (3752)
- Aortic valve disease (415)
- Mitral valve disease (229)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/