Skip to main content
Log in

Chlamydia pneumoniae infected macrophages exhibit enhanced plasma membrane fluidity and show increased adherence to endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chlamydia pneumoniae, an intracellular prokaryote, is known to have requirement for some lipids which it is incapable of synthesizing, and these lipids have important fluidizing roles in plasma membrane. We decided to examine if the trafficking of these lipids to C. pneumoniae alters the physicochemical properties of macrophage plasma membrane, affects the expression of genes and proteins of enzymes associated with metabolism of some of these lipids and assess if Ca2+ signaling usually induced in macrophages infected with C. pneumoniae modulates the genes of these selected enzymes. Chlamydia pneumoniae induced the depletion of macrophage membrane cholesterol, phosphatidylinositol and cardiolipin but caused an increase in phosphotidylcholine resulting in a relative increase in total phospholipids. There was increased membrane fluidity, enhanced macrophage fragility and heightened adherence of macrophages to endothelial cells despite the application of inhibitor of adhesion molecules. Also, there was impairment of macrophage 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase gene and protein expression independent of Ca2+ signaling, while phospholipase C gene and protein were up-regulated in a manner minimally dependent on Ca2+ signaling. The implications of these findings are that macrophages infected with C. pneumoniae have altered membrane physicochemical characteristics which may render them atherogenic. (Mol Cell Biochem 269: 69–84, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hatch GM, McClarty G: Phospholipid composition of purified Chlamydia trachomatis mimics that of the eukaryotic host cell. Infect Immun 66(8): 3727–3735, 1998

    Google Scholar 

  2. Belunis CJ, Mdluli KE, Raetz CR, Nano FE: A novel 3-deoxy-d-manno-octulosonic acid transferase from Chlamydia trachomatis required for expression of the genus-specific epitope. J Biol Chem 26726: 18702–18707, 1992

    Google Scholar 

  3. Brade H, Brade L, Nano FE: Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc Natl Acad Sci USA 84(8): 2508–2512, 1987

    Google Scholar 

  4. Newhall, WJ: Macromolecular and antigenic composition of chlamydiae. In: A.L. Barron ed. Microbiology of Chlamydia. CRC Press, Boca Raton, FL, pp 47–70, 1988

    Google Scholar 

  5. Wylie JL, Hatch GM, McClarty G: Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 17923: 7233–7242, 1997

    Google Scholar 

  6. Hackstadt T, Scidmore MA, Rockey DD: Lipid metabolism in Chlamydia trachomatis-infected cells: Directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci USA 9211: 4877–4881, 1995

    Google Scholar 

  7. Hahn DL, Azenabor AA, Beatty WL, Byrne GI: Chlamydia pneumoniae as a respiratory pathogen. Front Biosci 7: e66–e76, 2002

    Google Scholar 

  8. Kuo CC, Grayston JT, Campbell LA, Goo YA, Wissler RW, Benditt EP: Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). Proc Natl Acad Sci USA 92(15): 6911–6914, 1995

    Google Scholar 

  9. Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Makela PH, Huttunen JK, Valtonen V: Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 28618: 983–986, 1988

    Article  CAS  PubMed  Google Scholar 

  10. Thom DH, Grayston JT, Siscovick DS, Wang SP, Weiss NS, Daling JR: Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease. JAMA 2681: 68–72, 1992

    Article  Google Scholar 

  11. Shor A, Kuo CC, Patton DL: Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J 823: 158–161, 1992

    Google Scholar 

  12. Grayston JT, Kuo CC, Campbell LA, Benditt EP: Chlamydia pneumoniae, strain TWAR and atherosclerosis. Eur Heart J 14Suppl K: 66–71, 1993

    Google Scholar 

  13. Ramirez JA: Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group. Ann Intern Med 12512: 979–982, 1996

    Google Scholar 

  14. Fong IW, Chiu B, Viira E, Jang D, Mahony JB: De Novo induction of atherosclerosis by Chlamydia pneumoniae in a rabbit model. Infect Immun 6711: 6048–6055, 1999

    CAS  PubMed  Google Scholar 

  15. Rothstein NM, Quinn TC, Madico G, Gaydos CA, Lowenstein CJ: Effect of azithromycin on murine arteriosclerosis exacerbated by Chlamydia pneumoniae. J Infect Dis 1832: 232–238, 2001

    Article  Google Scholar 

  16. Azenabor AA, Job G, Yang S: Induction of lipoprotein lipase gene expression in Chlamydia pneumoniae-infected macrophages is dependent on Ca2+ signaling events. Biol Chem 3851: 67–74, 2004

    Google Scholar 

  17. Azenabor AA, Chaudhry AU: Chlamydia pneumoniae survival in macrophages is regulated by free Ca2+ dependent reactive nitrogen and oxygen species. J Infect 462: 120–128, 2003

    Google Scholar 

  18. Azenabor AA, Chaudhry AU: Effective macrophage redox defense against Chlamydia pneumoniae depends on l-type Ca2+ channel activation. Med Microbiol Immunol 1922: 99–106, 2003

    Google Scholar 

  19. Azenabor AA, Chaudhry AU, Yang S: Macrophage l-type Ca2+ channel antagonists alter Chlamydia pneumoniae MOMP and HSP-60 mRNA gene expression, and improve antibiotic susceptibility. Immunobiology 2074: 237–245, 2003

    Google Scholar 

  20. Azenabor AA, Yang S, Job G, Adedokun OO: Elicitation of ROS in Chlamydia pneumoniae stimulated macrophages: A Ca2+ dependent process involving simultaneous activation of NADPH-oxidase and cytochrome oxidase genes. Med Microbiol Immunol 193 on-line 2004

  21. Caldwell HD, Kromhout J, Schachter J: Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 313: 1161–1176, 1981

    Google Scholar 

  22. Whitehead JP, Molero JC, Clark S, Martin S, Meneilly G, James DE: The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J Biol Chem 27630: 27816–27824, 2001

    Google Scholar 

  23. Kogan TP, Dupre B, Bui H, McAbee KL, Kassir JM, Scott IL, Hu X, Vanderslice P, Beck PJ, Dixon RA: Novel synthetic inhibitors of selectin-mediated cell adhesion: Synthesis of 1,6-bis[3-3-carboxymethylphenyl-4-2-alpha-d-mannopyranosyloxy phenyl]hexane TBC1269. J Med Chem 417: 1099–1111, 1998

    Google Scholar 

  24. Forbes B, Wilson CG, Gumbleton M: Temporal dependence of ectopeptidase expression in alveolar epithelial cell culture: Implications for study of peptide absorption. Int J Pharm 1802: 225–234, 1999

    Google Scholar 

  25. Zhou X, Arthur G: Improved procedures for the determination of lipid phosphorus by malachite green. J Lipid Res 338: 1233–1236, 1992

    Google Scholar 

  26. Pai JK, Siegel MI, Egan RW, Billah MM: Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J Biol Chem 26325: 12472–12477, 1988

    Google Scholar 

  27. Schuh TJ: An introduction to lipid analysis in the cell biology laboratory. Am Biol Teacher 662: 122–129, 2002

    Google Scholar 

  28. Amundson DM, Zhou M: Fluorimetric method for the enzymatic determination of cholesterol. J Biochem Biophys Methods 381: 43–52, 1999

    Google Scholar 

  29. Dix JA, Verkman AS: Pyrene eximer mapping in cultured fibroblasts by ratio imaging and time-resolved microscopy. Biochemistry 297: 1949–1953, 1990

    Google Scholar 

  30. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P: Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 158: 879–891, 2001

    Google Scholar 

  31. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 1501: 76–85, 1985

    CAS  PubMed  Google Scholar 

  32. Grunenfelder J, Miniati DN, Murata S, Falk V, Hoyt EG, Kown M, Koransky ML, Robbins RC: Upregulation of Bcl-2 through caspase-3 inhibition ameliorates ischemia/reperfusion injury in rat cardiac allografts. Circulation 10412 Suppl 1: I202–I206, 2001

    Google Scholar 

  33. Singer CA, Figueroa-Masot XA, Batchelor RH, Dorsa DM: The mitogens-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci 197: 2455–2463, 1999

    CAS  PubMed  Google Scholar 

  34. Cik M, Chazot PL, Coleman SK, Stephenson FA: Using Promega’s CytoTox 96 non-radioactive cytotoxicity assay to measure cell death mediated by NMDA receptor subunits. Promega Notes Magazine 51: 21–23

  35. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1621: 156–159, 1987

    Article  CAS  PubMed  Google Scholar 

  36. Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M: Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 5112: 3486–3491, 2002

    Google Scholar 

  37. Park WY, Hwang CI, Imp CN, Kang MJ, Woo JH, Kim JH, Kim YS, Kim JH, Kim H, Kim KA, Yu HJ, Lee SJ, Lee YS, Seo JS: Identification of radiation-specific responses from gene expression profile. Oncogene 2155: 8521–8528, 2002

    Google Scholar 

  38. Bustin SA: Quantification of mRNA using real-time reverse transcription PCR RT-PCR: Trends and problems. J Mol Endocrinol 291: 23–39, 2002

    CAS  PubMed  Google Scholar 

  39. Wylie JL, Hatch GM, McClarty G: Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 17923: 7233–7242, 1997

    Google Scholar 

  40. Ross R: Cell biology of atherosclerosis. Annu Rev Physiol 57: 791–804, 1995

    Google Scholar 

  41. Tabas I: Cholesterol and phospholipid metabolism in macrophages. Biochim Biophys Acta 15291–3: 164–174, 2000

    Google Scholar 

  42. Tappia PS, Ladha S, Clark DC, Grimble RF: The influence of membrane fluidity, TNF receptor binding, cAMP production and GTPase activity on macrophage cytokine production in rats fed a variety of fat diets. Mol Cell Biochem 1661–2: 135–143, 1997

    Google Scholar 

  43. Brenner RR: Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res 232: 69–96, 1984

    Google Scholar 

  44. Carabeo RA, Mead DJ, Hackstadt T: Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci USA 10011: 6771–6776, 2003

    Google Scholar 

  45. Stubbs CD, Smith AD: The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 7791: 89–137, 1984

    Google Scholar 

  46. Goldstein JL, Brown, MS: Regulation of low-density lipoprotein receptors: Implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation 76: 504–507, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Azenabor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azenabor, A.A., Job, G. & Adedokun, O.O. Chlamydia pneumoniae infected macrophages exhibit enhanced plasma membrane fluidity and show increased adherence to endothelial cells. Mol Cell Biochem 269, 69–84 (2005). https://doi.org/10.1007/s11010-005-2537-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-2537-y

Keywords

Navigation