Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Genomic circuits and the integrative biology of cardiac diseases

Abstract

Human cardiac disease is the result of complex interactions between genetic susceptibility and environmental stress. The challenge is to identify modifiers of disease, and to design new therapeutic strategies to interrupt the underlying disease pathways. The availability of genomic databases for many species is uncovering networks of conserved cardiac-specific genes within given physiological pathways. A new classification of human cardiac diseases can be envisaged based on the disruption of integrated genomic circuits that control heart morphogenesis, myocyte survival, biomechanical stress responses, cardiac contractility and electrical conduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac neural crest defects.
Figure 2: Genetic modifiers and pathways for dilated cardiomyopathy.
Figure 3: Calcium cycling pathways in a cardiomyocyte and their involvement in heart failure.
Figure 4: A genetic pathway for cardiac sudden death as a result of defects in the transition between ventricular myocytes and conduction system cells (Purkinje fibre).

Similar content being viewed by others

References

  1. Benson, D. W. et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gruber, P. J. et al. RXRα deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J. Clin. Invest. 98, 1332– 1343 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mark, M. et al. A genetic dissection of the retinoid signalling pathway in the mouse. Proc. Nutr. Soc. 58, 609– 613 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Fleming, A. & Copp, A. J. Embryonic folate metabolism and mouse neural tube defects. Science 280, 2107–2109 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kreldberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 ( 1993).

    Article  Google Scholar 

  6. Chen, J., Kubalak, S. W. & Chien, K. R. Ventricular muscle restricted gene targeting of the RXRα gene reveals a non-cell autonomous requirement in cardiac chamber morphogenesis. Development 125, 1943– 1949 (1998).

    CAS  PubMed  Google Scholar 

  7. Grossfeld, P. D., Rothman, A., Gruber, P. & Chien, K. R. in Molecular Basis of Cardiovascular Disease: A Companion Text to E. Braunwald's Heart Disease (ed. Chien, K. R.) 135–165 (Saunders, Cambridge, MA, 1999).

    Google Scholar 

  8. Galili, N. et al. A region of mouse chromosome 16 is syntenic to the DiGeorge, velocardiofacial syndrome minimal critical region. Genome Res. 7, 17–26 (1997 ).

    Article  CAS  PubMed  Google Scholar 

  9. Yamagishi, H., Garg, V., Matsuoka, R., Thomas, T. & Srivastava, D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 283, 1158–1161 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Lindsay, E. A. et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401, 379– 383 (1999).

    ADS  CAS  PubMed  Google Scholar 

  11. Yanagisawa, H. et al. Role of endothelin-1/endothelin-A receptor-mediated signaling pathway in aortic arch patterning in mice. J. Clin. Invest. 102, 22–33 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Waldo, K. et al. A novel role for cardiac neural crest in heart development. J. Clin. Invest. 103, 1499–1507 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hunter, J. J. & Chien, K. R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276–1283 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Chien, K. R. Stress pathways and heart failure. Cell 98, 555–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Sheng, Z., Pennica, D., Wood, W. I. & Chien, K. R. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 122, 419– 428 (1996).

    CAS  PubMed  Google Scholar 

  16. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, Y. Y. et al. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J. Biol. Chem. 273, 10261– 10269 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Slamon, D. et al. Addition of Herceptin (humanized anti-Her2 antibody) to first line chemotherapy for Her2 overexpressing medistatic breast cancer (Her2 + \ MBC) markedly increases anti-cancer activity; a randomized, multinational controlled phase III trial. Proc. Am. Soc. Clin. Oncol. 17, 98a (1998).

    Google Scholar 

  20. Sadoshima, J. & Izumo, S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59, 551–571 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, J. & Chien, K. R. Complexity in simplicity: monogenic disorders and complex cardiomyopathies. J. Clin. Invest. 103, 1483–1485 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac myofibrillar organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y. S. & Keating, M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750–752 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Dalakas, M. C. et al. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N. Engl. J. Med. 342 , 770–780 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Satoh, M. et al. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem. Biophys. Res. Commun. 262, 411–417 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  26. McCoy, G. et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355, 2119– 2124 (2000).

    Article  Google Scholar 

  27. Dinoviâc-Carugo, K., Young, P., Gautel, M. & Saraste, M. Structure of the alpha-actinin rod: molecular basis for cross-linking of actin filaments. Cell 98, 537–546 ( 1999).

    Article  Google Scholar 

  28. Coral-Vazquez, R. et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy . Cell 98, 465–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature Genet. 21 , 285–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Tada, M. & Toyofuku, T. Molecular regulation of phospholamban function and expression. Trends Cardiovasc. Med. 8, 330–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Chien, K. R. Genes and physiology: molecular physiology in genetically engineered animals . J. Clin. Invest. 97, 901– 909 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minamisawa, S. et al. Chronic phospholamban–sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy . Cell 99, 313–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Miyamoto, M. E. et al. Adenoviral gene transfer of SERCA2a improves left ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl Acad. Sci. USA 97, 793– 798 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts . Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Curran, M. E., Sanguinetti, M. C. & Keating, M. T. in Molecular Basis of Cardiovascular Disease: A Companion Text to E. Braunwald's Heart Disease (ed. Chien, K. R.) 302– 311 (Saunders, Cambridge, MA, 1999).

    Google Scholar 

  36. Gourdie, R. G., Kubalak, S. & Mikawa, T. Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc. Med. 9, 18–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, H. et al. A novel, tissue restricted zinc finger protein (HF-1b) binds to the cardiac regulatory element (HF-1b/MEF-2) in the rat myosin light chain-2 gene. Mol. Cell Biol. 13, 4432– 4444 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen-Tran, V. T. B. et al. A novel genetic pathway for cardiac sudden death via defects in the transition between ventricular and conduction system cell lineages . Cell 102, 671–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Schott, J. J. et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281, 108– 111 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Franz, T. Persistent truncus arteriosus in the Splotch mutant mouse. Anat. Embryol. 180, 457–464 ( 1989).

    Article  CAS  Google Scholar 

  41. Clouthier, D. E. et al. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125, 813– 824 (1998).

    CAS  PubMed  Google Scholar 

  42. Kurihara, Y. et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 368, 703–710 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Yanagisawa, H. et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125, 825– 836 (1998).

    CAS  PubMed  Google Scholar 

  44. Ya, J. et al. Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ. Res. 83, 986– 994 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Reaume, A. G. et al. Cardiac malformation in neonatal mice lacking connexin 43 . Science 267, 1831–1834 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Donovan, M. J., Hahn, R., Tessarollo, L. & Hempstead, B. L. Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nature Genet. 14, 210– 213 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Tessarollo, L. et al. Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proc. Natl Acad. Sci. USA 94, 14776–14781 ( 1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brannan, C. I. et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues . Genes Dev. 8, 1019–1029 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Tullio, A. N. et al. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc. Natl Acad. Sci. USA 94, 12407–12412 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanford, L. P. et al. TGFβ2 knockout mice have multiple developmental defects that are nonoverlapping with other TGFβ knockout phenotypes. Development 124, 2659–2670 (1997).

    CAS  PubMed  Google Scholar 

  51. Srivastawa, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet. 16, 154–160 (1997).

    Article  Google Scholar 

  52. Iida, K. et al. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124, 4627–4638 (1997).

    CAS  PubMed  Google Scholar 

  53. Takihara, Y. et al. Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development 124, 3673– 3682 (1997).

    CAS  PubMed  Google Scholar 

  54. Emanuel, B. S., Budarf, M. L. & Scambler, P. J. in Heart Development (eds Harvey, R. P. & Rosenthal, N.) 463–478 (Academic, San Diego, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

I thank T. Nakamura, M. Hoshijima and S. Minamisawa for assistance with the figures, and J. Chen, S. Evans and K. Knowlton for helpful discussions. The author's laboratory is supported by grants from NIH, the Jean LeDucq Foundation, and an Endowed Chair from the American Heart Association (California Affiliate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Chien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, K. Genomic circuits and the integrative biology of cardiac diseases. Nature 407, 227–232 (2000). https://doi.org/10.1038/35025196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025196

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing