Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel HDL-directed pharmacotherapeutic strategies

Abstract

The burden of atherothrombotic cardiovascular disease remains high despite currently available optimum medical therapy. To address this substantial residual risk, the development of novel therapies that attempt to harness the atheroprotective functions of HDL is a major goal. These functions include the critical role of HDL in reverse cholesterol transport, and its anti-inflammatory, antithrombotic, and antioxidant activities. Discoveries in the past decade have shed light on the complex metabolic and antiatherosclerotic pathways of HDL. These insights have fueled the development of HDL-targeted drugs, which can be classified among four different therapeutic approaches: directly augmenting apolipoprotein A-I (apo A-I) levels, such as with apo A-I infusions and upregulators of endogenous apo A-I production; indirectly augmenting apo A-I and HDL-cholesterol levels, such as through inhibition of cholesteryl ester transfer protein or endothelial lipase, or through activation of the high-affinity niacin receptor GPR109A; mimicking the functionality of apo A-I with apo A-I mimetic peptides; and enhancing steps in the reverse cholesterol transport pathway, such as via activation of the liver X receptor or of lecithin–cholesterol acyltransferase.

Key Points

  • Four HDL-targeted drug approaches exist: directly augmenting apolipoprotein A-I (apo A-I) levels, indirectly augmenting apo A-I and HDL-cholesterol levels, mimicking the effects of apo A-I, and enhancing reverse cholesterol transport

  • From a pharmacodynamic standpoint, direct augmentation of lipid-poor apo A-I levels arguably represents the most validated HDL therapeutic approach in terms of antiatherogenic potential

  • The clinical efficacy of interventions that raise HDL-cholesterol levels through slowing its metabolism, such as inhibition of cholesteryl ester transfer protein or endothelial lipase, remains to be established

  • The discovery of the niacin receptor GPR109A helped to define the mechanisms underlying the effect of niacin on free fatty acids and flushing, although it is unclear how niacin raises HDL-cholesterol levels

  • With the exception of D-4F, apo A-I mimetic peptides require parenteral administration and, therefore, are likely to be initially targeted to patients at high risk with acute coronary syndromes

  • Intestinal-specific liver X receptor (LXR) agonism or LXRβ-specific agonism might enhance reverse cholesterol transport while avoiding toxicity associated with nonselective LXR activation, namely, hepatic lipogenesis and hypertriglyceridemia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HDL metabolism and targets of therapeutic intervention.

Similar content being viewed by others

References

  1. Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Frye, R. L. et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360, 2503–2515 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. deGoma, E. M., deGoma, R. L. & Rader, D. J. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J. Am. Coll. Cardiol. 51, 2199–2211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 108, 661–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Badimon, J. J., Badimon, L. & Fuster, V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J. Clin. Invest. 85, 1234–1241 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiesa, G. et al. Recombinant apolipoprotein A-I(Milano) infusion into rabbit carotid artery rapidly removes lipid from fatty streaks. Circ. Res. 90, 974–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Parolini, C. et al. Dose-related effects of repeated ETC-216 (recombinant apolipoprotein A-I Milano/1-palmitoyl-2-oleoyl phosphatidylcholine complexes) administrations on rabbit lipid-rich soft plaques: in vivo assessment by intravascular ultrasound and magnetic resonance imaging. J. Am. Coll. Cardiol. 51, 1098–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Badimon, J. J., Badimon, L., Galvez, A., Dische, R. & Fuster, V. High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab. Invest. 60, 455–461 (1989).

    CAS  PubMed  Google Scholar 

  10. Shah, P. K. et al. Effects of recombinant apolipoprotein A-I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation 97, 780–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Barter, P. J. et al. Antiinflammatory properties of HDL. Circ. Res. 95, 764–772 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Dimayuga, P. et al. Reconstituted HDL containing human apolipoprotein A-1 reduces VCAM-1 expression and neointima formation following periadventitial cuff-induced carotid injury in apoE null mice. Biochem. Biophys. Res. Commun. 264, 465–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Nicholls, S. J. et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111, 1543–1550 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Nissen, S. E. et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tardif, J. C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297, 1675–1682 (2007).

    Article  PubMed  Google Scholar 

  17. Waksman, R. et al. A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J. Am. Coll. Cardiol. 55, 2727–2735 (2010).

    Article  PubMed  Google Scholar 

  18. Sirtori, C. R. et al. Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study. Circulation 103, 1949–1954 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ameli, S. et al. Recombinant apolipoprotein A-I Milano reduces intimal thickening after balloon injury in hypercholesterolemic rabbits. Circulation 90, 1935–1941 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Shah, P. K. et al. High-dose recombinant apolipoprotein A-I(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization. Circulation 103, 3047–3050 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Franceschini, G. et al. Increased cholesterol efflux potential of sera from ApoA-IMilano carriers and transgenic mice. Arterioscler. Thromb. Vasc. Biol. 19, 1257–1262 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, L. et al. Bone marrow transplantation shows superior atheroprotective effects of gene therapy with apolipoprotein A-I Milano compared with wild-type apolipoprotein A-I in hyperlipidemic mice. J. Am. Coll. Cardiol. 48, 1459–1468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weibel, G. L. et al. Wild-type ApoA-I and the Milano variant have similar abilities to stimulate cellular lipid mobilization and efflux. Arterioscler. Thromb. Vasc. Biol. 27, 2022–2029 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Lebherz, C., Sanmiguel, J., Wilson, J. M. & Rader, D. J. Gene transfer of wild-type apoA-I and apoA-I Milano reduce atherosclerosis to a similar extent. Cardiovasc. Diabetol. 6, 15 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Parolini, C. et al. Apolipoprotein A-I and the molecular variant apoA-I(Milano): evaluation of the antiatherogenic effects in knock-in mouse model. Atherosclerosis 183, 222–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Alexander, E. T. et al. Macrophage reverse cholesterol transport in mice expressing ApoA-I Milano. Arterioscler. Thromb. Vasc. Biol. 29, 1496–1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tardif, J. C. Emerging high-density lipoprotein infusion therapies: fulfilling the promise of epidemiology? J. Clin. Lipidol. 4, 399–404 (2010).

    Article  PubMed  Google Scholar 

  28. Lerch, P. G., Förtsch, V., Hodler, G. & Bolli, R. Production and characterization of a reconstituted high density lipoprotein for therapeutic applications. Vox Sang. 71, 155–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Mack, W. J., Xiang, M., Selzer, R. H. & Hodis, H. N. Serial quantitative coronary angiography and coronary events. Am. Heart J. 139, 993–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Jukema, J. W. et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 91, 2528–2540 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Waters, D. et al. Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The Canadian Coronary Atherosclerosis Intervention Trial. Circulation 89, 959–968 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Shaw, J. A. et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ. Res. 103, 1084–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Patel, S. et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J. Am. Coll. Cardiol. 53, 962–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Calkin, A. C. et al. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120, 2095–2104 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. CSL Behring Research & Development Briefing [online], (2009).

  36. Sacks, F. M. et al. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J. Lipid Res. 50, 894–907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bailey, D. et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J. Am. Coll. Cardiol. 55, 2580–2589 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Miller, R. Oral inducer of apoA-1 synthesis RVX-208 misses end point but provides reasons for optimism [online], (2010).

  39. Neeli, H. & Rader, D. J. Cholesteryl ester transfer protein (CETP) inhibitors: is there life after torcetrapib? Cardiol. Clin. 26, 537–546 (2008).

    Article  PubMed  Google Scholar 

  40. Boekholdt, S. M. et al. Plasma levels of cholesteryl ester transfer protein and the risk of future coronary artery disease in apparently healthy men and women: the prospective EPIC (European Prospective Investigation into Cancer and nutrition)-Norfolk population study. Circulation 110, 1418–1423 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Brousseau, M. E. et al. Cholesteryl ester transfer protein TaqI B2B2 genotype is associated with higher HDL cholesterol levels and lower risk of coronary heart disease end points in men with HDL deficiency: Veterans Affairs HDL Cholesterol Intervention Trial. Arterioscler. Thromb. Vasc. Biol. 22, 1148–1154 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, B. et al. Causes of interscan variability of coronary artery calcium measurements at electron-beam CT. Acad. Radiol. 9, 654–661 (2002).

    Article  PubMed  Google Scholar 

  43. Ordovas, J. M. et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler. Thromb. Vasc. Biol. 20, 1323–1329 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Thompson, A. et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299, 2777–2788 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Borggreve, S. E. et al. High plasma cholesteryl ester transfer protein levels may favour reduced incidence of cardiovascular events in men with low triglycerides. Eur. Heart J. 28, 1012–1018 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Borggreve, S. E. et al. An increased coronary risk is paradoxically associated with common cholesteryl ester transfer protein gene variations that relate to higher high-density lipoprotein cholesterol: a population-based study. J. Clin. Endocrinol. Metab. 91, 3382–3388 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hirano, K. et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler. Thromb. Vasc. Biol. 17, 1053–1059 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Gaofu, Q. et al. Vaccinating rabbits with a cholesteryl ester transfer protein (CETP) B-Cell epitope carried by heat shock protein-65 (HSP65) for inducing anti-CETP antibodies and reducing aortic lesions in vivo. J. Cardiovasc. Pharmacol. 45, 591–598 (2005).

    Article  PubMed  Google Scholar 

  49. Morehouse, L. A. et al. Inhibition of CETP activity by torcetrapib reduces susceptibility to diet-induced atherosclerosis in New Zealand White rabbits. J. Lipid Res. 48, 1263–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Okamoto, H. et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Rittershaus, C. W. et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 2106–2112 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Sugano, M. et al. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J. Biol. Chem. 273, 5033–5036 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Bots, M. L. et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 370, 153–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Nicholls, S. J., Tuzcu, E. M., Brennan, D. M., Tardif, J. C. & Nissen, S. E. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 118, 2506–2514 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Rader, D. J. Illuminating HDL—is it still a viable therapeutic target? N. Engl. J. Med. 357, 2180–2183 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Barter, P. Lessons learned from the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Am. J. Cardiol. 104 (10 Suppl.), 10E–15E (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Matsuura, F., Wang, N., Chen, W., Jiang, X. C. & Tall, A. R. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest. 116, 1435–1442 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Forrest, M. J. et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br. J. Pharmacol. 154, 1465–1473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ishigami, M. et al. Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J. Biochem. 116, 257–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Yvan-Charvet, L. et al. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler. Thromb. Vasc. Biol. 27, 1132–1138 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Yvan-Charvet, L. et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler. Thromb. Vasc. Biol. 30, 1430–1438 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tanigawa, H. et al. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116, 1267–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Vergeer, M. & Stroes, E. S. The pharmacology and off-target effects of some cholesterol ester transfer protein inhibitors. Am. J. Cardiol. 104 (10 Suppl.), 32E–38E (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Niesor, E. J. et al. Modulating cholesteryl ester transfer protein activity maintains efficient pre-β-HDL formation and increases reverse cholesterol transport. J. Lipid Res. 51, 3443–3454 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. de Grooth, G. J. et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized phase II dose-response study. Circulation 105, 2159–2165 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Kuivenhoven, J. A. et al. Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. Am. J. Cardiol. 95, 1085–1088 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Stein, E. A. et al. Safety and tolerability of dalcetrapib (RO4607381/JTT-705): results from a 48-week trial. Eur. Heart J. 31, 480–488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. ClinicalTrials.gov. A study of the effect of dalcetrapib on artherosclerotic disease in patients with coronary artery disease [online], (2010).

  70. ClinicalTrials.gov. A study of the effect of RO4607381 on atherosclerotic plaque in patients with coronary heart disease [online], (2010).

  71. ClinicalTrials.gov. A study assessing the effect of RO4607381 on vascular function in patients with coronary heart disease (CHD) or CHD-risk equivalent patients [online], (2010).

  72. ClinicalTrials.gov. A study of RO4607381 in stable coronary heart disease patients with recent acute coronary syndrome [online], (2010).

  73. Ranalletta, M. et al. Biochemical characterization of cholesteryl ester transfer protein inhibitors. J. Lipid Res. 51, 2739–2752 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Krishna, R. et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies. Lancet 370, 1907–1914 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bloomfield, D. et al. Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am. Heart J. 157, 352–360 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Cannon, C. P. et al. Design of the DEFINE trial: determining the EFficacy and tolerability of CETP INhibition with AnacEtrapib. Am. Heart J. 158, 513–519 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Cannon, C. P. et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363, 2406–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. ClinicalTrials.gov. REVEAL: Randomized EValuation of the Effects of Anacetrapib through Lipid-modification [online], (2010).

  79. Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. & Grace, K. A. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110, 3512–3517 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Canner, P. L. et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).

    Article  CAS  PubMed  Google Scholar 

  82. Villines, T. C. et al. The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J. Am. Coll. Cardiol. 55, 2721–2726 (2010).

    Article  PubMed  Google Scholar 

  83. ClinicalTrials.gov. Niacin plus statin to prevent vascular events [online], (2010).

  84. ClinicalTrials.gov. Treatment of HDL to reduce the incidence of vascular events HPS2-THRIVE [online], (2010).

  85. Altschul, R., Hoffer, A. & Stephen, J. D. Influence of nicotinic acid on serum cholesterol in man. Arch. Biochem. 54, 558–559 (1955).

    Article  CAS  PubMed  Google Scholar 

  86. Jin, F. Y., Kamanna, V. S. & Kashyap, M. L. Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 17, 2020–2028 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Shepherd, J., Packard, C. J., Patsch, J. R., Gotto, A. M. Jr & Taunton, O. D. Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism. J. Clin. Invest. 63, 858–867 (1979).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Blum, C. B. et al. High density lipoprotein metabolism in man. J. Clin. Invest. 60, 795–807 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Lamon-Fava, S. et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28, 1672–1678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tunaru, S. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9, 352–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Maccubbin, D. et al. Flushing profile of extended-release niacin/laropiprant versus gradually titrated niacin extended-release in patients with dyslipidemia with and without ischemic cardiovascular disease. Am. J. Cardiol. 104, 74–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Hanson, J. et al. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J. Clin. Invest. 120, 2910–2919 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dunbar, R. L. & Gelfand, J. M. Seeing red: flushing out instigators of niacin-associated skin toxicity. J. Clin. Invest. 120, 2651–2655 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Richman, J. G. et al. Nicotinic acid receptor agonists differentially activate downstream effectors. J. Biol. Chem. 282, 18028–18036 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Lai, E. et al. Effects of a niacin receptor partial agonist, MK-0354, on plasma free fatty acids, lipids, and cutaneous flushing in humans. J. Clin. Lipidol. 2, 375–383 (2008).

    Article  PubMed  Google Scholar 

  96. Choi, S. Y., Hirata, K., Ishida, T., Quertermous, T. & Cooper, A. D. Endothelial lipase: a new lipase on the block. J. Lipid Res. 43, 1763–1769 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Ishida, T. et al. Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 111, 347–355 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin, W., Millar, J. S., Broedl, U., Glick, J. M. & Rader, D. J. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 111, 357–362 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jaye, M. et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21, 424–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Edmondson, A. C. et al. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J. Clin. Invest. 119, 1042–1050 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Badellino, K. O., Wolfe, M. L., Reilly, M. P. & Rader, D. J. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med. 3, e22 (2006).

    Article  PubMed  CAS  Google Scholar 

  102. Badellino, K. O., Wolfe, M. L., Reilly, M. P. & Rader, D. J. Endothelial lipase is increased in vivo by inflammation in humans. Circulation 117, 678–685 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Tang, N. P. et al. Protective effect of an endothelial lipase gene variant on coronary artery disease in a Chinese population. J. Lipid Res. 49, 369–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Vergeer, M. et al. Lack of association between common genetic variation in endothelial lipase (LIPG) and the risk for CAD and DVT. Atherosclerosis 211, 558–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Jensen, M. K. et al. The T111I variant in the endothelial lipase gene and risk of coronary heart disease in three independent populations. Eur. Heart J. 30, 1584–1589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown, R. J. et al. Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ. Res. 107, 357–364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goodman, K. B. et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg. Med. Chem. Lett. 19, 27–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Van Lenten, B. J. et al. Apolipoprotein A-I mimetic peptides. Curr. Atheroscler. Rep. 11, 52–57 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Navab, M. et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid Res. 45, 993–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Anantharamaiah, G. M. et al. Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides. J. Lipid Res. 48, 1915–1923 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Navab, M. et al. Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 105, 290–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Datta, G. et al. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J. Lipid Res. 42, 1096–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Smythies, L. E. et al. Apolipoprotein A-I mimetic 4F alters the function of human monocyte-derived macrophages. Am. J. Physiol. Cell Physiol. 298, C1538–C1548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Song, X., Fischer, P., Chen, X., Burton, C. & Wang, J. An apoA-I mimetic peptide facilitates off-loading cholesterol from HDL to liver cells through scavenger receptor BI. Int. J. Biol. Sci. 5, 637–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Van Lenten, B. J. et al. Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. J. Lipid Res. 49, 2302–2311 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xie, Q., Zhao, S. P. & Li, F. D-4F, an apolipoprotein A-I mimetic peptide, promotes cholesterol efflux from macrophages via ATP-binding cassette transporter A1. Tohoku J. Exp. Med. 220, 223–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Buga, G. M. et al. L-4F alters hyperlipidemic (but not healthy) mouse plasma to reduce platelet aggregation. Arterioscler. Thromb. Vasc. Biol. 30, 283–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Li, X. et al. Differential effects of apolipoprotein A-I-mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. Circulation 110, 1701–1705 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Navab, M. et al. D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 25, 1426–1432 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Bloedon, L. T. et al. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J. Lipid Res. 49, 1344–1352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rader, D. J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest. 116, 3090–3100 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ruchala, P. et al. Oxpholipin 11D: an anti-inflammatory peptide that binds cholesterol and oxidized phospholipids. PLoS One 5, e10181 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Bielicki, J. K. et al. A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. J. Lipid Res. 51, 1496–1503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. D'Souza, W. et al. Structure/function relationships of apolipoprotein a-I mimetic peptides: implications for antiatherogenic activities of high-density lipoprotein. Circ. Res. 107, 217–227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rader, D. J. Liver X receptor and farnesoid X receptor as therapeutic targets. Am. J. Cardiol. 100 (Suppl. 1), S15–S19 (2007).

    Article  CAS  Google Scholar 

  126. Rigamonti, E. et al. Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circ. Res. 97, 682–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Costet, P., Luo, Y., Wang, N. & Tall, A. R. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J. Biol. Chem. 275, 28240–28245 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Brunham, L. R. et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest. 116, 1052–1062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Alberti, S., Steffensen, K. R. & Gustafsson, J. A. Structural characterisation of the mouse nuclear oxysterol receptor genes LXRα and LXRβ. Gene 243, 93–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Grefhorst, A. et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J. Biol. Chem. 277, 34182–34190 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Peet, D. J. et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93, 693–704 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Alberti, S. et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice. J. Clin. Invest. 107, 565–573 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lund, E. G. et al. Different roles of liver X receptor α and β in lipid metabolism: effects of an α-selective and a dual agonist in mice deficient in each subtype. Biochem. Pharmacol. 71, 453–463 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Quinet, E. M. et al. Liver X receptor (LXR)-β regulation in LXRα-deficient mice: implications for therapeutic targeting. Mol. Pharmacol. 70, 1340–1349 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Bradley, M. N. et al. Ligand activation of LXRβ reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRα and apoE. J. Clin. Invest. 117, 2337–2346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fiévet, C. & Staels, B. Liver X receptor modulators: effects on lipid metabolism and potential use in the treatment of atherosclerosis. Biochem. Pharmacol. 77, 1316–1327 (2009).

    Article  PubMed  CAS  Google Scholar 

  138. Yoshikawa, T. et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 21, 2991–3000 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Inaba, T. et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem. 278, 21344–21351 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Jakel, H. et al. The liver X receptor ligand T0901317 down-regulates APOA5 gene expression through activation of SREBP-1c. J. Biol. Chem. 279, 45462–45469 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Schaap, F. G. et al. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J. Biol. Chem. 279, 27941–27947 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Yasuda, T. et al. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler. Thromb. Vasc. Biol. 30, 781–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lo Sasso, G. et al. Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell. Metab. 12, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Föger, B. et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem. 274, 36912–36920 (1999).

    Article  PubMed  Google Scholar 

  145. Hoeg, J. M. et al. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc. Natl Acad. Sci. USA 93, 11448–11453 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mertens, A. et al. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Circulation 107, 1640–1646 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Santamarina-Fojo, S., Lambert, G., Hoeg, J. M. & Brewer, H. B. Jr. Lecithin-cholesterol acyltransferase: role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr. Opin. Lipidol. 11, 267–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Rader, D. J. Lecithin:cholesterol acyltransferase and atherosclerosis. Another high-density lipoprotein story that doesn't quite follow the script. Circulation 120, 549–552 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Calabresi, L. et al. Functional lecithin:cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation 120, 628–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Holleboom, A. G. et al. Plasma levels of lecithin:cholesterol acyltransferase and risk of future coronary artery disease in apparently healthy men and women: a prospective case-control analysis nested in the EPIC-Norfolk population study. J. Lipid Res. 51, 416–421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hovingh, G. K. et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation 112, 879–884 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Dullaart, R. P., Perton, F., van der Klauw, M. M., Hillege, H. L. & Sluiter, W. J. High plasma lecithin:cholesterol acyltransferase activity does not predict low incidence of cardiovascular events: possible attenuation of cardioprotection associated with high HDL cholesterol. Atherosclerosis 208, 537–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Tanigawa, H. et al. Lecithin:cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation 120, 160–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Heart, Lung and Blood Institute (HL22633 and P50 HL70128) and the National Center for Research Resources (UL1-RR-024134). E. M. deGoma's salary is partially funded by a National Heart, Lung and Blood Institute grant (K12 HL083772-01).

Author information

Authors and Affiliations

Authors

Contributions

E. M. deGoma and D. J. Rader contributed equally to the discussion of content for the article, the research of data to include in the manuscript, writing the article and the reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Emil M. deGoma.

Ethics declarations

Competing interests

D. J. Rader is a consultant for Abbott, AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Johnson & Johnson, Merck, Novartis, and Resverlogix. E. M. deGoma declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

deGoma, E., Rader, D. Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol 8, 266–277 (2011). https://doi.org/10.1038/nrcardio.2010.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing