Elsevier

Developmental Biology

Volume 223, Issue 2, 15 July 2000, Pages 266-278
Developmental Biology

Regular Article
Chamber Formation and Morphogenesis in the Developing Mammalian Heart

https://doi.org/10.1006/dbio.2000.9753Get rights and content
Under an Elsevier user license
open archive

Abstract

In this study we challenge the generally accepted view that cardiac chambers form from an array of segmental primordia arranged along the anteroposterior axis of the linear and looping heart tube. We traced the spatial pattern of expression of genes encoding atrial natriuretic factor, sarcoplasmic reticulum calcium ATPase, Chisel, Irx5, Irx4, myosin light chain 2v, and β-myosin heavy chain and related these to morphogenesis. Based on the patterns we propose a two-step model for chamber formation in the embryonic heart. First, a linear heart forms, which is composed of “primary” myocardium that nonetheless shows polarity in phenotype and gene expression along its anteroposterior and dorsoventral axes. Second, specialized ventricular chamber myocardium is specified at the ventral surface of the linear heart tube, while distinct left and right atrial myocardium forms more caudally on laterodorsal surfaces. The process of looping aligns these primordial chambers such that they face the outer curvature. Myocardium of the inner curvature, as well as that of inflow tract, atrioventricular canal, and outflow tract, retains the molecular signature originally found in linear heart tube myocardium. Evidence for distinct transcriptional programs which govern compartmentalization in the forming heart is seen in the patterns of expression of Hand1 for the dorsoventral axis, Irx4 and Tbx5 for the anteroposterior axis, and Irx5 for the distinction between primary and chamber myocardium.

Keywords

cardiogenesis
cardiac development
chamber myocardium
mammalian heart
inner curvature

Cited by (0)

1

To whom correspondence should be addressed. E-mail: [email protected].