Skip to main content
Log in

Angiotensin II receptor antagonists in heart failure: Rationale and design of the evaluation of losartan in the elderly (ELITE) trial

  • Heart Failure
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Angiotensin-converting enzyme inhibitors (ACE-I) have been proven to be effective in reducing morbidity and mortality in patients with heart failure or post-myocardial infarction left ventricular dysfunction. Despite evidence from several large-scale randomized trials, the use of ACE-I in patients with heart failure remains relatively low. In part, the failure to achieve more widespread use of ACE-I in patients with heart failure may be due to physician's perceptions of the side effects associated with ACE-I, such as angioedema, renal dysfunction, cough, and hypotension. Many of these side effects are thought to be due to ACE-I-induced bradykinin accumulation. It is possible to inhibit the effect of angiotensin II without increasing bradykinin levels using an angiotensin II type I blocking agent such as losartan. How effective losartan is compared with an ACE-I is uncertain, however. Some of the beneficial effects of ACE-I have been attributed to bradykinin accumulation, and therefore ACE-I might have an advantage compared with an angiotensin II type I receptor antagonist such as losartan. On the other hand, angiotensin II may be produced by non-ACE-I-dependent mechanisms, which would suggest that an angiotensin II type I receptor blocking agent would be advantageous. To determine the relative safety and efficacy of an ACE-I, which results in bradykinin accumulation and inhibitors of angiotensin II, versus an angiotensin II type I receptor blocking agent, which does not result in bradykinin accumulation, we have begun the Evaluation of Losartan In The Elderly (ELITE) trial, which will compare the safety and efficacy of captopril and losartan in elderly patients with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS).N Engl J Med 1987;316:1429–1435.

    Google Scholar 

  2. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure.N Engl J Med 1991;325:293–302.

    Google Scholar 

  3. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions.N Engl J Med 1992;327:685–691.

    Google Scholar 

  4. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of congestive heart failure.N Engl J Med 1991;324:303–310.

    Google Scholar 

  5. Pfeffer MA, Braunwald E, Moye LA, et al. on behalf of the SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival and Ventricular Enlargement Trial.N Engl J Med 1992;327:669–677.

    Google Scholar 

  6. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure.Lancet 1993;342:812–828.

    Google Scholar 

  7. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H on behalf of the CONSENSUS II Study Group. Effects on the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the cooperative new Scandinavian enalapril survival study II (CONSENSUS II).N Engl J Med 1992;327:678–684.

    Google Scholar 

  8. Gruppo Italiano per lo Studio delia Sopravvivenza nell'infarto Miocardico. GISSI-3: Effects of lisinopril and transdermal glyceryl tinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction.Lancet 1994;343:1115–22.

    Google Scholar 

  9. ISIS Collaborative Group, Oxford UK. ISIS-4: Randomized study of oral isosorbide mononitrate in over 50,000 patients with suspected acute myocardial infarction.Circulation 1993;88:1394.

    Google Scholar 

  10. Flaherty J. Personal communication.

  11. Bashey RI, Martinex-Hernandez A, Jimenez SA. Isolation, characterization, and localization of cardiac collagen type VI: Associations with other extracellular matrix components.Circ Res 1992;70:1006–1017.

    Google Scholar 

  12. Gavras I. Bradykinin-mediated effects of ACE inhibition.Kidney Int 1992;42:1020–1029.

    Google Scholar 

  13. Benjamin N, Collier JG, Webb DJ. Angiotensin II augments sympathetically induced vasoconstriction in man.Clin Sci 1988;75:337–340.

    Google Scholar 

  14. Davis JO. Mechanisms regulating the secretion and metabolism of aldosterone in experimental secondary hyperaldosteronism.Recent Prog Horm Res 1961;17:293–352.

    Google Scholar 

  15. Fanestil DD, Park CS. Steroid hormones and the kidney.Ann Rev Physiol 1981;43:637–49.

    Google Scholar 

  16. Naftilan AJ, Pratt RE, Eldridge CS, et al. Angiotension II induces c-fos expression in smooth muscle cell via transcriptional control.Hypertension 1989;13:706–711.

    Google Scholar 

  17. Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat.Circ Res 1994;74:727–739.

    Google Scholar 

  18. Weber KT, Villareal D. Aldosterone and antialdosterone therapy in congestive heart failure.Am J Cardiol 1993;71:3A-11A.

    Google Scholar 

  19. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: Fibrosis and renin-angiotensin-aldosterone system.Circulation 1991;83:1849–1865.

    Google Scholar 

  20. Ho KKL, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: The Framingham study.J Am Coll Cardiol 1993;22(Suppl A):6A-13A.

    Google Scholar 

  21. Keider S, Brook JG, Aviram M. Angiotensin II enhances lipid peroxidation of low-density lipoprotein.Am Physiol Soc 1993;8:245–248.

    Google Scholar 

  22. Grafe M, Auch-Schwelk W, Graf K, et al. Induction of the adhesion molecular E-selectin in human cardiac endothelial cells by angiotensin II (abstr).Circulation 1994;88:I-316.

    Google Scholar 

  23. Farber HW, Center DM, Rounds S, Danilov SM. Components of the angiotensin system cause release of a neutrophil chemoattractant from cultured bovine and human endothelial cells.Eur Heart J 1990;11(Suppl B):100–107.

    Google Scholar 

  24. Dohi Y, Hahn AWA, Boulanger CM, et al. Endothelin stimulated by angiotensin II augments contractility of spontaneously hypertensive rat resistance arteries.Hypertension 1992;19:131–137.

    Google Scholar 

  25. Vaughn DE, Shen C, Lazos S. Angiotensin II induces plasminogen activator inhibition (PAI-1) production in vitro (abstr).Circulation 1992;86:I557.

    Google Scholar 

  26. Boadle MC, Hughes J, Roth RH. Angiotensin accelerates catecholamine biosynthesis in sympathetically innervated tissues.Nature 1969;222:987–988.

    Google Scholar 

  27. Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JA. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension.N Engl J Med 1991;324:1098–1104.

    Google Scholar 

  28. Cambien F, Poirer O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction.Nature 1992;359:641–644.

    Google Scholar 

  29. Lind L, Lithell H, Wide L, et al. Metabolic cardiovascular risk factors and the renin-aldosterone system in essential hypertension.J Hum Hypertens 1992;6:27–29.

    Google Scholar 

  30. Barr CS, Hanson J, Kennedy N, Lang CC, Struthers AD. The effect of a mineralocorticoid antagonist on myocardial mIBG uptake in congestive heart failure.Circulation 1993;88:I-256.

    Google Scholar 

  31. Ehlers MRW, Riordan JF. Angiotensin-converting enzyme: New concepts concerning its biological role.Biochemistry 1989;28:5311–5318.

    Google Scholar 

  32. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human chymase.J Biol Chem 1990;265:22348–22357.

    Google Scholar 

  33. Okunishi H, Oka Y, Shiota N, Kawamoto T, Song K, Miyazaki M. Marked species-differences in the vascular angiotensin II-forming pathways. Human versus rodents.Jpn J Pharmacol 1993;62:207–210.

    Google Scholar 

  34. Wong PC, et al. Nonpeptide angiotensin II receptor antagonists. IX. Antihypertensive activity in rats of DuP 753, an orally active antihypertensive agent.J Pharmacol Exp Ther 1990;252:726–732.

    Google Scholar 

  35. Nelson E, et al. Efficacy and safety of oral MK-954 (DuP 753), angiotensin receptor antagonist, in essential hypertension.J Hypertens 1991;9:S468-S469.

    Google Scholar 

  36. Qing G, Garcia R. Chronic captopril and losartan (DuP 753) administration in rats with high-output heart failure.Am J Physiol 1992;263:H833-H840.

    Google Scholar 

  37. Wong PC, et al. Nonpeptide angiotensin II receptor antagonists. VIII. Characterization of functional antagonism displayed by DUP 753, an orally active antihypertensive agent.J Pharmacol Exp Ther 1990;252:719–725.

    Google Scholar 

  38. Suzuki Y, Matsumura Y, Egi Y, Morimoto S. Effects of losartan, a nonpeptide angiotensin II receptor antagonist, on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetized dogs.J Pharmacol Exp Ther 1992;263:956–963.

    Google Scholar 

  39. Lang ML, Yellen LG, McKelvie RS, et al. on behalf of the Losartan Pilot Exercise Study Investigators. Comparative effects of losartan and enalapril on exercise capacity and clinical status in patients with heart failure (abstr).Circulation 1994;90:1602.

    Google Scholar 

  40. Smits JFM, VanKrimpen C, Schoemaker RG, Cleutjens JPM, Daemen MJAP. Angiotensin II receptor blockade after myocardial infarction in rats: Effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen.J Pharmacol 1992;20:772–778.

    Google Scholar 

  41. Richard V, Berdeaux A, Guidicelli JF. Systemic and coronary effects of the angiotensin II receptor antagonist EXP3174 in dogs.J Pharmacol 1993;22:52–57.

    Google Scholar 

  42. Raya TE, Fonken SJ, Lee RW, et al. Hemodynamic effects of direct angiotensin II blockade compared to converting enzyme inhibition in rat model of heart failure.Am J Hypertens 1991;4:334S-340S.

    Google Scholar 

  43. Raya TE, et al. Hemodynamic effects of direct angiotensin II blockade compared to converting enzyme inhibition in rat model of heart failure.Am J Hypertens 1991;4:334S-340S.

    Google Scholar 

  44. Sudhir K, MacGregor JS, Gupta M, et al. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on the coronary vasculature in vivo. Intravascular two-dimensional and Doppler ultrasound studie.Circulation 1993;87:931–938.

    Google Scholar 

  45. Gansevoort RT, De Zeeuw D, De Jong P. Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin-angiotensin system?Kidney Int 1994;45:861–867.

    Google Scholar 

  46. Auch-Schwelk W, Bossaller C, Claus M, Graf M, Fleck E. ACE inhibitors are endothelium dependent vasodilators of coronary arteries during submaximal stimulation with bradykinin.Cardiovasc Res 1993;27:312–317.

    Google Scholar 

  47. Lahera V, Salom MG, Kiksen-Olsen MJ, Romero JC. Mediator role of endothelium-derived nitric oxide in renal vasodilator and excretory effects of bradykinin.Am J Hypertens 1991;4:260–262.

    Google Scholar 

  48. Cachefeiro V, Sakakibara T, Nasjletti A. Kinins, nitric oxide, and the hypotensive effect of captopril and ramiprilat in hypertension.Hypertension 1992;19:138–45.

    Google Scholar 

  49. Schror K. converting enzyme inhibitors and the interaction between kinins and eicosanoids.J Cardiovasc Pharmacol 1990;15(Suppl 6):S60–68.

    Google Scholar 

  50. Linz W, Scholkens BA. Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors.J Cardiovasc Pharmacol 1992;20(Suppl 9):S83-S90.

    Google Scholar 

  51. Wilkins HY, Steger R, Back N. Effect of protease inhibition on biochemical changes, cardiovascular dynamics and survival in experimental coronary artery occlusion.Circ Shock 1975;2:277–286.

    Google Scholar 

  52. Gavras H, Gavras I. Cardioprotective potential of angiotensin converting enzyme inhibitors.J Hypertens 1991;9:385–392.

    Google Scholar 

  53. Hartman JC, Wall TM, Hullinger TG, Shebuski RJ. Reduction of myocardial infarct size in rabbits by ramiprilat: Reversal of the bradykinin antagonist HOE140.J Cardiovasc Pharmacol 1993;21:996–1003.

    Google Scholar 

  54. Schieffer B, Wirger A, Meybrunn M, et al. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type I receptor blockade on cardiac remodeling after myocardial infarction in the rat.Circulation 1994;89:2273–2282.

    Google Scholar 

  55. Okunishi H, Miyazaki M, Okamura T, Toda N. Different distribution of two types of angiotensin II-generating enzymes in the aortic wall.Biochem Biophys Res Commun 1987;149:1186–1192.

    Google Scholar 

  56. Urata H, Healy B, Bernadine H, Stewart RW, Bumpus RM, Husain A. Angiotensin II forming pathways in normal and failing human hearts.Circ Res 1990;66:883–890.

    Google Scholar 

  57. Linz W, Scholkens BA. A specific BK2-bradykinin receptor antagonist Hoe 140 abolishes the antihypertrophic effect of ramipril.Br J Pharmacol 1991;105:771–772.

    Google Scholar 

  58. Linz W, Schaper J, Wiemer G, Albus U, Scholkens BA. Rampiril prevents left ventricular hypertrophy with myocardial fibrosis without blood pressure reduction: A one year study in rats.Br J Pharmacol 1992;107:970–975.

    Google Scholar 

  59. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II.Circ Res 1991;69:1185–1195.

    Google Scholar 

  60. McAllister BS, Leeb-Lundberg F, Olson MS. Bradykinin inhibition of EGF- and PDGF-induced DNA synthesis in human fibroblasts.Am J Physiol 1993;265:C477-C484.

    Google Scholar 

  61. Unger Th, Mattfield T, Lamberty V, et al. Effect of early onset ACE inhibition on myocardial capillaries in SHR.Hypertension 1992;20:478–482.

    Google Scholar 

  62. Zimmerman BG, Raich PC, Vavrek RJ, Stewart JM. Bradykinin contribution to renal blood flow effect of angiotensin converting enzyme inhibitor in the conscious sodiumrestricted dog.Circ Res 1990;66:234–240.

    Google Scholar 

  63. Bonner G, Preis S, Schunk U, Iwersen D. Hemodynamic effects of kinins and their role in blood pressure regulation. In:The Kallikrein-Kinin System in Health and Disease. Braunschweig: Limbach-Verlag Bruanschweig, 1989:79.

    Google Scholar 

  64. Drexler H, Hayoz D, Munzel T, et al. Endothelial function in chronic congestive heart failure.Am J Cardiol 1992;69:1596–1601.

    Google Scholar 

  65. Lundmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerosis coronary arteries.N Engl J Med 1986;315:1046–1051.

    Google Scholar 

  66. Werns SW, Walton JA, Hsia HH, Nabel EG, Sanz ML, Pitt B. Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease.Circulation 1989;79:287–291.

    Google Scholar 

  67. Zeiher AM, Drexler S, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans: Effects of age, atherosclerosis, hypercholesterolemia, and hypertension.J Clin Invest 1993;92:652–662.

    Google Scholar 

  68. Rafflenbuhl W, Bassenge E, Lichtlen P. Konkurrenz zwischen endothelabhangiger und nitroglycerin-induzierter koronarer vasodilatation.Z Kardiol 1991;78(Suppl 2):45–47.

    Google Scholar 

  69. Editorial: Kinins and their antagonists.Lancet 1991;2:287–288.

    Google Scholar 

  70. Simon SR, Black HR, Moser M, Berland WE. Cough and ACE Inhibitors.Arch Intern Med 1992;152:1698–1700.

    Google Scholar 

  71. Soler M, Sielczak MW, Abraham WM. A bradykininantagonist blocks antigen-induced airway hyperresponsive and inflammation in sheep.Pulm Pharmacol 1990;3:9–15.

    Google Scholar 

  72. Benetos A, Gavras H, Stewart JM, Vavrek RJ, Hatinoglous S, Gavras I. Vasodepressor role of endogenous bradykinin assessed by a bradykinin antagonist.Hypertension 1986;8:971–974.

    Google Scholar 

  73. Kon V, Fogo A, Ichikawa I. Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition.Kidney Int 1993;44:545–550.

    Google Scholar 

  74. Remuzzi A, Perico N. Amuchastegui CS, et al. Short and long term effect of angiotensin II receptor blockade in rats with experimental diabetes.J Am Soc Nephrol 1993;4:40–49.

    Google Scholar 

  75. Lewis EJ, Hunsicker LG, Bain RP, et al. A clinical trial of an angiotensin converting enzyme inhibitor in the nephropathy of insulin-dependent diabetes mellitus.N Engl J Med 1993;329:1456–1463.

    Google Scholar 

  76. Okunishi H, Miyazaki M, Toda N. Evidence for a putatively new angiotensin II-generating enzyme in the vascular wall.J Hypertens 1984;2:277–284.

    Google Scholar 

  77. Aldigier JC, Huang H, Dalmay F, et al. Angiotensin-converting enzyme inhibition does not suppress plasma angiotensin II increase during exercise in humans.J Cardiovasc Pharmacol 1993;21:289–295.

    Google Scholar 

  78. Miura S, Ideishi M, Sakai T, et al. Angiotensin II formation by an alternative pathway during exercise in humans.J Hypertens 1994;12:1177–1181.

    Google Scholar 

  79. Pouleur H, Konstam MA, Benedict CR, et al. Progression of left ventricular dysfunction during enalapril therapy: Relationship with neuro-hormonal reactivation.Circulation 1993;88:I-293.

    Google Scholar 

  80. Timmermans PBMWM, Smight RD. A new class of therapeutic agents: The angiotension II receptor antagonists.Cardiologia 1994;39(Suppl 1):397–400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitt, B., Chang, P. & Timmermans, P.B.M.W.M. Angiotensin II receptor antagonists in heart failure: Rationale and design of the evaluation of losartan in the elderly (ELITE) trial. Cardiovasc Drug Ther 9, 693–700 (1995). https://doi.org/10.1007/BF00878552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878552

Keywords

Navigation