Skip to main content
Log in

Chronic hibernating myocardium: Interstitial changes

  • Part I: Extracellular Matrix and Cardiocyte Interaction
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic left ventricular dysfunctional but viable myocardium of patients with chronic hibernation is characterized by structural changes, which consist of depletion of contractile elements, accumulation of glycogen, nuclear chromatin dispersion, depletion of sarcoplasmic reticulum and mitochondrial shape changes. These alterations are not reminiscent of degeneration but are interpreted as de-differentiation of the cardiomyocytes. The above mentioned changes are accompanied by a marked increase in the interstitial space. The present study describes qualitative and quantitative changes in the cellular and non-cellular compartments of the interstitial space. In chronic hibernating myocardial segments the increased extracellular matrix is filled with large amounts of type I collagen, type III collagen and fibronectin. An increase in the number of vimentin-positive cells (endothelial cells and fibroblasts) compared with normal myocardium is seen throughout the extracellular matrix.

The increase in interstitial tissue is considered as one of the main determinants responsible for the lack of immediate recovery of contractile function after restoration of the blood flow to the affected myocardial segments of patients with chronic left ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eghbali M, Eghballi M, Robinson TF, Seifter S, Blumenfeld OO: Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res 23: 723–729, 1989

    PubMed  Google Scholar 

  2. Caufield JB, Borg TK: The collagen network of the heart. Lab Invest 40: 364–372, 1979

    PubMed  Google Scholar 

  3. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey KI: Collagen remodelling of the pressure overloaded, hypertrophied non-human primate myocardium. Circ Res 62: 757–765, 1988

    PubMed  Google Scholar 

  4. Weber KT: Cardiac interstitium in, health and disease: the fibrillar collagen network. J Am Coll Cardiol 13: 1637–1652, 1989

    PubMed  Google Scholar 

  5. Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT Collagen network remodelling and diastolic stiffness of rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22: 686–695, 1988

    PubMed  Google Scholar 

  6. Jalil JE, Doering W, Janicki JS, Pick R, Clark WA, Abrahams C, Weber KT: Structural vs. contractile protein remodelling and myocardial stiffness in hypertrophied rat left ventricle. J Mol Cell Cardiol 20: 1179–1187, 1988

    PubMed  Google Scholar 

  7. Jalil JE, Doering W, Janicki JS, Pick R, Shroff SG, Weber KT: Fibrillar collagen and myocardial stiffness in intact hypertrophied rat left ventricle Circ Res 64: 1041–1050, 1989

    PubMed  Google Scholar 

  8. Pick R, Janicki JS, Weber KT: Myocardial fibrosis in nonhuman primate with pressure overload hypertrophy. Am J Pathol 135: 771–781, 1989

    PubMed  Google Scholar 

  9. Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport I, Samuel JL: Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest 64: 65–75, 1991

    PubMed  Google Scholar 

  10. Volders PGA, Willems IEMG, Cleutjens JPM, Arends J-W, Havenith MG, Daemen MJAP: Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 25: 1317–1323, 1993

    PubMed  Google Scholar 

  11. Borgers M, Thoné F, Wouters L, Ausma J, Shivalkar B, Flameng W: Structural correlates of regional myocardial dysfunction in patients with critically coronary artery stenosis: chronic hibernation? Cardiovasc Pathol 2: 237–245, 1993

    Google Scholar 

  12. Vanoverschelde J-L, Wijns W, Depré C, Essamri B, Heyndricks GR, Borgers M, Bol A, Melin J: Mechanisms of chronic regional postischemic dysfunction in humans: new insights from the study of non-infarcted collateral dependent myocardium. Circulation 87: 1513–1523, 1993

    PubMed  Google Scholar 

  13. Ausma J, Ramaekers F, Shivalker B, Thoné F, Flameng W, Borgers M: Cellular adaptation in hibernating myocardium in the human. In: M. Hori, Y. Maruyama, RS Reneman (eds). Cardiac adaptation and failure. Springer-Verlag, Tokyo, 85–99, 1994

    Google Scholar 

  14. Maes A, Shivalkar B, Flameng W, Nuyts J, Borgers M, Ausma J, Bormans G, Schiepers C, De Roo M, Mortelmans L: Histological alterations in chronically hypoperfused myocardium: correlation with PET findings. Circulation 90: 735–745, 1994

    PubMed  Google Scholar 

  15. Schaart G, Vander Ven PMF, Ramaekers FCS: Characterization of cardiotin, a structural component in the myocard. Eur J Cell Biol 62: 34–48, 1993

    PubMed  Google Scholar 

  16. Ausma J, Schaart G, Thoné F, Shivalker B, Flameng W, Depré Ch, Vanoverschelde J-L, Ramaekers F, Borgers M: Chronic ischemic viable myocardium in man: Aspects of dedifferentation. Cardiovasc Pathol 4: 29–37, 1995

    Google Scholar 

  17. Flameng W, Wouters L, Sergeant P, Lewi P, Borgers M, Thoné F, Suy R: Multivariate analysis of angiographic histologic and electrocardiographic data in patients with coronary heart disease. Circulation 70: 7–17, 1984

    PubMed  Google Scholar 

  18. Junqueira LCU, Bignolas G, Bretani RR: Picrosirius staining plus polarization microscopy: a specific method for collagen detection in tissue sections. Histochem J 11: 447–455, 1979

    PubMed  Google Scholar 

  19. Bedossa P, Bacci J, Lemaigre G, Martin E: Effects of fixation and procession on the immunohistochemical visualisation of type-I,-III and-IV collagen in paraffin-embedded liver tissue. Histochemistry 88: 85–89, 1987

    PubMed  Google Scholar 

  20. Havenith MG, Cleutjens JPM, Beek C, vd Linden E, De Goey AFPM, Bosman FT: Human specific anti-type IV collagen monoclonal antibodies, characterization and immunochemical application. Histochemistry 87: 123–128, 1987

    PubMed  Google Scholar 

  21. Van Helden WCH, Kok-Verspuy A, Harff GA, van Kamp GJ: Ratenephelometric determination of fibronectin in plasma. Clin Chem 31: 1182–1184, 1985

    PubMed  Google Scholar 

  22. Wewer U, Albrechtsen R, Manthorpe M, Varon S, Engvall E, Ruoslathi E: Human laminin isolated in a nearly intact biologically active form from placenta by limited proteolysis. J Biol Chem 20: 12654–12660, 1983

    Google Scholar 

  23. Ramaekers FCS, Huijsmans A, Schaart G, Moesker O, Vooijs GP: Tissue distribution of keratin 7 as monitored by a monoclonal antibody. Expl Cell Res 170: 235–249, 1987

    Google Scholar 

  24. Ramaekers FCS, Puts JJG, Moesker O, Kant A, Huysmans A, Haag D, Jap PHK, Herman CJ, Vooijs GP: Antibodies to intermediate filament proteins in immunohistochemical identification of human tumors: an overview. Histochem J 15: 691–713, 1983

    PubMed  Google Scholar 

  25. Woodcock-Mitchell J, Mitchell JJ, Low RB, Kieny M, Sengel P, Rubbia L, Skalli O, Jackson B, Gabbiani G: α-Smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 39: 161–166, 1988

    PubMed  Google Scholar 

  26. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillesen D, Gabbiani G: A monoclonal antibody against α-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103: 2787–2796, 1986

    PubMed  Google Scholar 

  27. Raats FR, Henderik JB, Verdijk M, van Oort FLG, Gerads WLM, Ramaekers FCS: Bloemendaal H: Assembly of the carboxy-terminally deleted desmin in vimentin free cells. Eur J Cell Biol 56: 84–103, 1991

    PubMed  Google Scholar 

  28. Schaart G, Viebahn C, Langmann W, Ramaekers FCS: Desmin and titin expression in early postimplantation mouse embryos. Development 107: 585–596, 1989

    PubMed  Google Scholar 

  29. Laitinen L, Hormia M, Virtanen I:Psophocarpus tetragonolobus agglutinin reveals N-acetyl galactosaminyl residues confined to endothelial cells and some epithelial cells in human tissues. J Histochem Cytochem 38: 875–884, 1990

    PubMed  Google Scholar 

  30. van Krimpen C, Smits JFM, Cleutjens JPM, Debels JJ, Schoenmaker RG, Struyker-Boudier HAJ, Bosma FT, Daemen MJAP: DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: effects of captopril. J Mol Cell Cardiol 23: 1245–1253, 1991

    PubMed  Google Scholar 

  31. Cassells W, Kimura H, Sanchez JA, Yu Z-X, Ferrans VJ: Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 137: 801–810, 1990

    PubMed  Google Scholar 

  32. Weber KT, Jalil JE, Janicki JS, Pick R: Myocardial collagen remodelling in pressure overload hypertrophy. A case for interstitial heart disease. Am Heart J 2: 931–940, 1989

    Google Scholar 

  33. Vracko R, Cunninghasm D, Frederickson G, Thorning D: Basal lamina of rat myocardium. Its fate after death of cardiac myocytes. Lab Invest 58: 77–87, 1988

    PubMed  Google Scholar 

  34. Wolff PG, Kühl U, Schultheiss H-P: Laminin distribution and autoantibodies to laminin in dilated cardiomyopathy and myocarditis. Am Heart J 117: 1303–1309, 1989

    PubMed  Google Scholar 

  35. Gabbiani G, Le lous M, Bailey AJ, Bazin S, Delaunary A: Collagen and myofibroblasts of granulation tissue. Virchows Arch B Cell Path 21: 133–145, 1976

    Google Scholar 

  36. Darby I, Skalli I, Gabbiani G: α-Smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63: 21–29, 1990

    PubMed  Google Scholar 

  37. Skalli O, Schürch, Seemayer T, Lagacé R, Montandon D, Pittet B, Gabbiani G: Myofibroblasts from diverse pathologic settings are hterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest 60: 275–285, 1989

    PubMed  Google Scholar 

  38. Lesie KD, Taatjes DJ, von Turkovich M, Low RB: Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in rabbit. Am J Pathol 139: 207–216, 1991

    PubMed  Google Scholar 

  39. Bishop JE, Greenbaum R, Gibson DG, Yacoub M, Laurent GJ: Enhanced deposition of predominantly type I collagen in myocardial disease. J Mol Cell Cardiol 22: 1157–1165, 1990

    PubMed  Google Scholar 

  40. Weber KT, Brilla CG: Pathological hypertrophy and cardiac interstitium. Circulation 83: 1849–1865, 1991

    PubMed  Google Scholar 

  41. Villarreal FJ, Dillmann WH: Cardiac hypertrophy changes in mRNA levels for TGF-β1, fibronectin and collagen. Am J Physiol 262: H1861-H1866, 1992

    PubMed  Google Scholar 

  42. Weber KT, Brilla CG, Janicki JS: Myocardial fibrosis: functional significance and regulatory factors. Cardiovascular Research 27: 341–348, 1993

    PubMed  Google Scholar 

  43. Tubau JF, Rahimtoola SH: Hibernating myocardium: a historical perspective. Cardiovasc Drugs Ther 6: 267–271, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ausma, J., Cleutjens, J., Thoné, F. et al. Chronic hibernating myocardium: Interstitial changes. Mol Cell Biochem 147, 35–42 (1995). https://doi.org/10.1007/BF00944781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00944781

Key words

Navigation