Skip to main content
Log in

Nonhomogeneous electrophysiological changes and the bimodal distribution of early ventricular arrhythmias during acute coronary artery occlusion

  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

There is experimental evidence that the bimodally distributed ventricular arrhythmias (phases Ia and Ib) during the first 30 min after coronary occlusion (CO) in dogs are not due to the same mechanism. In 39 dogs we related the incidence of phases Ia and Ib to the time courses of excitation thresholds (ET), refractoriness (REFR), conduction times (CT) and effective refractory periods (ERP) at 6–12 epicardial electrode sites within the ischemic zone. The regional collateral myocardial blood flow (RMBF-tracer microsphere technique) was determined in 14 out of the dogs. This measurement only served for rough grouping into dogs with low and higher RMBF at the electrode sites during ischemia. REFR was determined as temporal recovery of excitability at a constant current strength of 4–6 times preocclusion ET. ERP was intermittently measured at 2.0–8.0 mA. At low RMBF ET, REFR and CT increased very

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CT:

conduction time

DispERP :

dispersion of effective refractory periods

EL:

electrode

ERP:

effective refractory period

ET:

excitation threshold

LAD:

left anterior descending coronary artery

R1 :

S1-paced basic ventricular excitation

R2 :

S2-induced ventricular extrasystole

REFR:

refractoriness

RMBF:

regional myocardial blood flow

RMBFIZ :

regional myocardial blood flow at the ischemic electrode site

RMBFNZ :

regional myocardial blood flow within normally perfused left ventricular myocardium

S1 :

pacing stimulus

S2 :

premature stimulus for determination of refractoriness

SIC:

strength-interval curve

SS:

stimulus strength

TM:

tracer microspheres

VA:

ventricular arrhythmia

VES:

ventricular extrasystole

VF:

ventricular fibrillation

References

  1. Allen JB, Laadt JR (1950) The effect of the level of the ligature on mortality following ligation of the circumflex coronary artery in the dog. Amer Heart J 39:273–278

    Article  PubMed  Google Scholar 

  2. Antoni H, Zerweck T (1967) Besitzen die sympathischen Überträgerstoffe einen direkten Einfluß auf die Leitungsgeschwindigkeit des Säugetiermyokards? Pflügers Arch 293:310–330

    Article  Google Scholar 

  3. Axelrod PJ, Verrier RL, Lown B (1975) Vulnerability to ventricular fibrillation during acute coronary arterial occlusion and release. Amer J Cardiol 36:776–782

    Article  PubMed  Google Scholar 

  4. Bissett JK, Watson JW, Scovil JA, Schmid N, McConnell JR, Kane J (1979) Changes in myocardial refractory periods following ischemia in the porcine heart. J Electrocardiol 12:35–40

    PubMed  Google Scholar 

  5. Boineau JP, Cox JL (1973) Slow ventricular activation in acute myocardial infarction. A source of re-entrant premature ventricular contractions. Circulation 48:702–713

    PubMed  Google Scholar 

  6. Brooks CMcC, Gilbert JL, Greenspan ME, Lange G, Mazzella HM (1960) Excitability and electrical response of ischemic heart muscle. Amer J Physiol 198:1143–1147

    PubMed  Google Scholar 

  7. Cranefield PE (1975) The conduction of the cardiac impulse. Mount Kisko, New York, Futura Publ Co (1975)

    Google Scholar 

  8. Dominguez G, Fozzard H (1970) Influence of extracellular K+ concentration on cable properties and excitability of sheep cardiac Purkinje fibers. Circulat Res 26:565–574

    PubMed  Google Scholar 

  9. Downar E, Janse MJ, Durrer D (1977) The effect of “ischemic” blood on transmembrane potentials of normal porcine ventricular myocardium. Circulation 55:455–462

    PubMed  Google Scholar 

  10. Downar E, Janse MJ, Durrer D (1977) The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation 56:217–224

    PubMed  Google Scholar 

  11. Elharrar V, Foster PR, Jirak TL, Gaum WE, Zipes DP (1977) Alterations in canine myocardial excitability during ischemia. Circulat Res 40:98–105

    PubMed  Google Scholar 

  12. El-Sherif N, Scherlag BJ, Lazzara R, Samet P (1974) Pathophysiology of tachycardia- and bradycardia-dependent block in the canine proximal His-Purkinje system after acute ischemia. Amer J Cardiol 33:529–540

    Article  PubMed  Google Scholar 

  13. El-Sherif N, Scherlag BJ, Lazzara R (1975) Electrode catheter recording during malignant ventricular arrhythmia following experimental acute myocardial ischemia. Evidence for re-entry due to conduction delay and block in ischemic myocardium. Circulation 51:1001–1014

    Google Scholar 

  14. Gambetta M, Childers RW (1969) The initial electrophysiologic disturbance in experimental myocardial infarction. Ann Intern Med 70:1076 Abstr.

    Google Scholar 

  15. Haase M, Schiller U (1969) Zur zeitlichen Parallelität zwischen der Aktivität ektopischer Schrittmacher und dem Eintritt von Kammerflimmern nach Ligatur eines Hauptkoronarastes beim Hund. Acta biol med germ 23:413–422

    Google Scholar 

  16. Han J, Moe, GK (1964) Nonuniform recovery of excitability in ventricular muscle. Circulat Res 14:44–60

    PubMed  Google Scholar 

  17. Harris AS (1950) Delayed development of ventricular ectopic rhythms following experimental coronary occlusion. Circulation 1:1318–1328

    PubMed  Google Scholar 

  18. Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Progr Cardiovasc Dis 20:55–79

    Google Scholar 

  19. Hill JL, Gettes LS (1980) Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 61:768–778

    PubMed  Google Scholar 

  20. Hirche HJ, Franz C, Bös L, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12:579–593

    Article  PubMed  Google Scholar 

  21. Janse MJ, van Capelle FJL, Morsink H, Kleber AG, Wilms-Schopman F, Cardinal R, Naumann d'Alnoncourt C, Durrer D (1980) Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circulat Res 47:151–165

    PubMed  Google Scholar 

  22. Janse MJ, Kleber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circulat Res 49:1069–1081

    PubMed  Google Scholar 

  23. Kabell G, Scherlag BJ, Hope RR, Lazzara R (1982) Regional myocardial blood flow and ventricular arrhythmias following one-stage and two-stage coronary artery occlusion in anesthetized dogs. Amer Heart J 104:537–544

    Article  PubMed  Google Scholar 

  24. Kagiyama Y, Hill JL, Gettes LS (1982) Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction in guinea pig ventricular muscle. Circulat Res 51:614–623

    PubMed  Google Scholar 

  25. Kaplinsky E, Ogawa S, Balke W, Dreifus LS (1979) Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation 60:397–403

    PubMed  Google Scholar 

  26. Kaplinsky E, Ogawa S, Kmetzo J, Balke CW, Dreifus LS (1980) Intramyocardial activation in early ventricular arrhythmias following coronary artery ligation. J. Electrocardiol 13:1–6

    PubMed  Google Scholar 

  27. Katzung BG, Hondeghem LM, Grant AO (1975) Cardiac ventricular automaticity induced by current of injury. Pflügers Arch 360:193–197

    Article  Google Scholar 

  28. Kléber AG, Janse MJ, van Capelle FJL, Durrer D (1978) Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circulat Res 42:603–613

    PubMed  Google Scholar 

  29. Krosigk S von, Neumann M, Meesmann W (1982) Increase of myocardial collateral blood flow during the first 30 min (=first arrhythmic phase) after acute circumflex artery occlusion in dogs. Pflügers Arch Suppl to Vol 392:R5

    Google Scholar 

  30. Levine HJ, Avitall B, Pauker SG, Naimi S (1978) Sequential unipolar strength-interval curves and conduction times during myocardial ischemia and reperfusion in the dog. Circulat Res 43:63–72

    PubMed  Google Scholar 

  31. Levites R, Banka VS, Helfant RH (1975) Electrophysiologic effecs, of coronary occlusion and reperfusion. Observations of dispersion of refractoriness and ventricular automaticity. Circulation 52:760–764

    PubMed  Google Scholar 

  32. Meesmann W, Schulz F-W, Schley G, Adolphsen P (1970) Überlebensquote nach akutem experimentellem Coronarverschluß in Abhängigkeit von Spontankollateralen des Herzens. Z ges exp Med 153:246–264

    Google Scholar 

  33. Meesmann W, Wiegand V, Menken U, Komhard W, Rehwald U (1978) Early mortality due to ventricular fibrillation and the vulnerability of the heart following acute experimental coronary occlusion: possible mechanisms and pharmacological prophylaxis. In: Bauer RD, Busse R (eds) The arterial system. Dynamics, Control theory and Regulation, Springer, Berlin Heidelberg New York 275–284

    Google Scholar 

  34. Morena H, Janse MJ, Fiolet JWT, Krieger WJG, Crijns H, Durrer D (1980) Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis in intracellular and extracellular potentials and metabolism in the isolated porcine heart. Circulat Res 46:634–646

    PubMed  Google Scholar 

  35. Naimi S, Avitall B, Mieszala J, Levine HJ (1977) Dispersion of effective refractory period during abrupt reperfusion of ischemic myocardium in dogs. Amer J Cardiol 39:407–412

    PubMed  Google Scholar 

  36. Peon J, Ferrier GR, Moe GK (1978) The relationship of excitability to conduction velocity in canine Purkinje tissue. Circulat Res 43:125–135

    PubMed  Google Scholar 

  37. Rivas F, Cobb FR, Bache RJ, Greenfield JC (1976) Relationship between blood flow to ischemic regions and extent of myocardial infarction. Circulat Res 38:439–447

    PubMed  Google Scholar 

  38. Saito T, Hill JL, Gettes LS (1978) Determinants of conduction velocity in guinea pig papillary muscle at varying K+ concentrations. Circulation 58, Suppl II, II-45, Abstr

    PubMed  Google Scholar 

  39. Savage RM, Guth B, White FC, Hagan AD, Bloor C (1981) Correlation of regional myocardial blood flow and function with myocardial infarct size during acute myocardial ischemia in the conscious pig. Circulation 64:699–707

    PubMed  Google Scholar 

  40. Schaper W (1971) The collateral circulation of the heart. North Holland Publishing Co, Amsterdam

    Google Scholar 

  41. Scherlag BJ, El-Scherif N, Hope RR, Lazzara R (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circulat Res 35:372–383

    PubMed  Google Scholar 

  42. Scherlag BJ, Kabell G, Harrison L, Lazzara R (1982) Mechanisms of bradycardia-induced ventricular arrhythmias in myocardial ischemia and infarction. Circulation 65:1429–1434

    PubMed  Google Scholar 

  43. Schley G, Meesmann W, Wild U, Wild A (1973) Der Einfluß von Infarktgröße und Spontankollateralen auf die Flimmerschwelle des Herzens nach akutem experimentellem Koronarverschluß. Verh Dtsch Ges Kreislaufforschung 39:203–207

    Google Scholar 

  44. Waldo AL, Kaiser GA (1973) A study of ventricular arrhythmias associated with acute myocardial infarction in the canine heart. Circulation 47:1222–1228

    PubMed  Google Scholar 

  45. Wiegand V, Güggi M, Meesmann W, Kessler M, Greitschus F (1979) Extracellular potassium activity changes in the canine myocardium after acute coronary occlusion and the influence of betablockade. Cardiovas Res 13:297–302

    Google Scholar 

  46. Windisch H, Tritthart HA (1982) Isoproterenol, norepinephrine and phosphodiesterase inhibitors are blockers of the depressed fast Na+ system in ventricular muscle fibers. J Mol Cell Cardiol 14:431–434

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Minister für Wissenschaft und Forschung des Landes NRW, FRG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horacek, T., Neumann, M., von Mutius, S. et al. Nonhomogeneous electrophysiological changes and the bimodal distribution of early ventricular arrhythmias during acute coronary artery occlusion. Basic Res Cardiol 79, 649–667 (1984). https://doi.org/10.1007/BF01908383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908383

Keywords

Navigation