Skip to main content
Log in

Platelet size distribution measurements as indicators of shear stress-induced platelet aggregation

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanisms underlying shear stress-induced platelet aggregation (SIPA) were investigated by measuring changes in the platelet size distributions resulting from the exposure of human platelet-rich plasma (PRP) to well-defined shear stresses in a modified viscometer. Exposure of PRP to a shear stress of 100 dyne/cm2 for 1 min at 37°C resulted in the loss of single platelets, an overall shift in the distribution to larger particle sizes, and the generation of platelet fragments. Treatment of PRP prior to shearing with a monoclonal antibody directed against platelet glycoprotein (GP) IIb-IIIa (integrin αIIbβ3) at a concentration that completely inhibited ADP-induced platelet aggregation also inhibited SIPA. Furthermore, incubation of PRP with a recombinant fragment of von Willebrand factor (vWF) that abolishes ristocetin-induced platelet agglutination significantly inhibited but did not eliminate SIPA. Pretreatment of PRP with the tetrapeptides RGDS or RGDV, which constitute the GP IIb-IIIa peptide recognition sequences on fibrinogen and vWF, almost completely blocked platelet aggregation at 100 dyne/cm2, whereas the negative control peptide RGES had no discernible effect. Finally, incubation of PRP with a monoclonal antibody directed against the platelet vitronectin receptor (integrin αvβ3) did not affect SIPA. These results indicate that both GP IIb-IIIa and GP Ib, the latter through its interaction with vWF, are required for SIPA at 100 dyne/cm2; that the interaction of GP IIb-IIIa with its adhesive ligands under shear stress can be inhibited by RGD-containing peptides; and that the vitronectin receptor on platelets, which shares the same β3 subunit as GP IIb-IIIa, plays no role in SIPA. On the basis of these results, the assessment of platelet size distributions provides a sensitive and quantitative measurement for the study of SIPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner, H. R., T. B. Tschopp, and D. Meyer. Shear rate-dependent inhibition of platelet adhesion and aggregation to collagenous surfaces by antibodies to human factor VIII/von Willebrand factor.Br. J. Haematol. 44:127–139, 1980.

    CAS  PubMed  Google Scholar 

  2. Baumgartner, H. R., V. T. Turitto, and H. J. Weiss. Effects of shear rate on platelet interaction with subendothelium in citrated and native blood. II. Relationships among platelet adhesion, thrombus dimensions, and fibrin formation.J. Lab. Clin. Med. 95:208–221, 1980.

    CAS  PubMed  Google Scholar 

  3. Brown, C. H., L. B. Leverett, C. W. Lewis, C. P. Alfrey, and J. D. Hellums. Morphological, biochemical, and functional changes in human platelets subjected to shear stress.J. Lab. Clin. Med. 86:462–471, 1975.

    PubMed  Google Scholar 

  4. Caen, J. P., A. T. Nurden, C. Jeanneau, H. Michel, G. Tobelem, S. Levy-Toledano, Y. Sultan, F. Valensi, and J. Bernard. Bernard-Soulier syndrome: A new platelet glycoprotein abnormality. Its relationship with platelet adhesion to subendothelium and with the factor VIII/von Willebrand protein.J. Lab. Clin. Med. 87:586–596, 1976.

    CAS  PubMed  Google Scholar 

  5. Chow, T. W., J. D. Hellums, J. L. Moake, and M. H. Kroll. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation.Blood 80:113–120, 1992.

    CAS  PubMed  Google Scholar 

  6. DeMarco, L., A. Girolami, T. S. Zimmerman, and Z. Ruggeri. von Willebrand factor interaction with the glycoprotein II/IIIa complex: Its role in platelet function as demonstrated in patients with congenital afibrinogenemia.J. Clin. Invest. 77:1272–1277, 1986.

    CAS  Google Scholar 

  7. Gemmell, C. H., M. V. Sefton, and E. L. Yeo. Plateletderived microparticle formation involves glycoprotein IIb-IIIa.J. Biol. Chem. 268:14586–14589, 1993.

    CAS  PubMed  Google Scholar 

  8. Gralnick, H. R., S. Williams, L. McKeown, W. Kramer, H. Krutzsch, M. Gorecki, A. Pinet, and L. I. Garfinkel. A monomeric von Willebrand factor fragment, Leu-504-Lys728, inhibits von Willebrand factor interaction with glycopotein Ib-IX.Proc. Natl. Acad. Sci. U.S.A. 89:7880–7884, 1992. Erratum appears inProc. Natl. Acad. Sci. U.S.A. 90(7): 3118, 1993.

    CAS  PubMed  Google Scholar 

  9. Ikeda, Y., M. Handa, K. Kawano, T. Kamata, M. Murata, Y. Araki, H. Anbo, Y. Kawai, K. Watanabe, I. Itagaki, K. Sakai, and Z. Ruggeri. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress.J. Clin. Invest. 87:1234–1240, 1991.

    CAS  PubMed  Google Scholar 

  10. Kroll, M. H., J. D. Hellums, Z. Guo, W. Durante, K. Razdan, J. K. Hrbolich, and A. I. Schafer. Protein kinase C is activated in platelets subjected to pathological shear stress.J. Biol. Chem. 268:3520–3524, 1993.

    CAS  PubMed  Google Scholar 

  11. Lawrence, J. B., W. S. Kramer, L. P. McKeown, S. B. Williams, and H. R. Grainick. Arginine-glycine-aspartic-acid-and fibrinogen γ-chain carboxyterminal peptides inhibit platelet adherence to arterial subendothelium at high wall shear rates.J. Clin. Invest. 86:1715–1722, 1990.

    CAS  PubMed  Google Scholar 

  12. Meyer, D., and H. R. Baumgartner. Role of von Willebrand factor in platelet adhesion to the subendothelium.Br. J. Haematol. 54:1–9, 1983.

    CAS  PubMed  Google Scholar 

  13. Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. H. Nolasco, and J. D. Hellums. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stressinduced platelet aggregation.J. Clin. Invest. 78:1456–1461, 1986.

    CAS  PubMed  Google Scholar 

  14. Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. H. Nolasco, and J. D. Hellums. Shear-induced platelet aggregation can be mediated by vWF released by platelets, as well as exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin.Blood 71:1366–1374, 1988.

    CAS  PubMed  Google Scholar 

  15. Peterson, D. M., N. A. Stathopoulos, T. D. Giorgio, J. D. Hellums, and J. L. Moake. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa.Blood 69:625–628, 1987.

    CAS  PubMed  Google Scholar 

  16. Phillips, D. R., I. F. Charo, and R. M. Scarborough. GP IIb-IIIa: The responsive integrin.Cell 65:359–362, 1991.

    Article  CAS  PubMed  Google Scholar 

  17. Ruggeri, Z. M. The platelet glycoprotein Ib-IX complex. In:Seminars in Thrombosis and Hemostasis, edited by B. S. Coller. Philadelphia: W. B. Saunders, 1990, pp. 35–68.

    Google Scholar 

  18. Sixma, J. J., and J. Wester. The hemostatic plug.Sem. Hematol. 14:265–299, 1977.

    CAS  Google Scholar 

  19. Timmons, S., and J. Hawiger. von Willebrand factor can substitute for plasma fibrinogen in ADP-induced platelet aggregation.Trans. Assoc. Am. Physicians 99:226–235, 1986.

    CAS  PubMed  Google Scholar 

  20. Turitto, V. T., H. J. Weiss, and H. R. Baumgartner. Decreased platelet adhesion on vessel segments in von Willebrand's disease: A defect in initial platelet attachment.J. Lab. Clin. Med. 102:551–564, 1983.

    CAS  PubMed  Google Scholar 

  21. Walsh, P. N. Platelets, blood coagulation, and hemostasis. In:Platelets and Thrombosis, edited by S. Sherry and A. Scriabine. Baltimore: University Park, 1972, pp. 23–43.

    Google Scholar 

  22. Weiss, H. J., J. Hawiger, Z. M. Ruggeri, V. T. Turitto, P. Thiagarajan, and T. Hoffmann. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate.J. Clin. Invest. 83:288–297, 1989.

    CAS  PubMed  Google Scholar 

  23. Weiss, H. J., V. T. Turitto, and H. R. Baumgartner. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear-rate dependent decrease of adhesion in von Willebrand's disease and the Bernard-Soulier syndrome.J. Lab. Clin. Med. 92:750–764, 1978.

    CAS  PubMed  Google Scholar 

  24. Weiss, H. J., V. T. Turitto, and H. R. Baumgartner. Platelet adhesion and thrombus formation on subendothelium in platelets deficient in glycoproteins IIb-IIIa, Ib and storage granules.Blood 67:322–330, 1986.

    CAS  PubMed  Google Scholar 

  25. Weiss H. J., V. T. Turitto, and H. R. Baumgartner. Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium.J. Clin. Invest. 78:1072–1082, 1986.

    CAS  PubMed  Google Scholar 

  26. Zwaal, R. F. A., P. Comfurius, and E. M. Bevers. Platelet procoagulant activity and microvesicle formation: Its putative role in hemostasis and thrombosis.Biochim. Biophys. Acta 1180:1–8, 1992.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slack, S.M., Jennings, L.K. & Turitto, V.T. Platelet size distribution measurements as indicators of shear stress-induced platelet aggregation. Ann Biomed Eng 22, 653–659 (1994). https://doi.org/10.1007/BF02368290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368290

Keywords

Navigation