Skip to main content
Log in

Ventriculo-arterial coupling: Concepts, assumptions, and applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent investigations have yielded new insights into the interaction of the left ventricle with the arterial system. These studies have employed a variety of coupling frameworks to quantify this interaction, and each makes several simplifying assumptions. In this article, we review these frameworks, their major findings, assumptions, and clinical applications, and examine future directions for this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel, F.L. Fourier analysis of left ventricular performance. Circ. Res. 28:119–135; 1971.

    CAS  PubMed  Google Scholar 

  2. Alexander, J.; Burkhoff, D.; Schipke, J.; Sagawa, K. Influence of mean pressure on aortic impedance and reflections in the systemic arterial system. Am. J. Physiol. 257:H969-H978; 1989.

    PubMed  Google Scholar 

  3. Asanoi, H.; Sasayama, S.; Kameyama, T. Ventriculo-arterial coupling in normal and failing heart in humans. Circ. Res. 65:483–493; 1989.

    CAS  PubMed  Google Scholar 

  4. Avolio, A.P.; Chen, S.G.; Wang, R.P.; Zhang, C.L.; Li, M.F.; O'Rourke, M.F. Effects of age on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68:50–58; 1983.

    CAS  PubMed  Google Scholar 

  5. Burkhoff, D.; Alexander, J.; Schipke, J. Assessment of Widkessel as a model of aortic input impedance. Am. J. Physiol. 255:H742-H753; 1988.

    CAS  PubMed  Google Scholar 

  6. Burkhoff, D.; de Tombe, P.P.; Hunter, W.C.; Kass, D.A. Contractile strength and mechanical efficiency of left ventricle are enhanced by physiologic afterload. Am. J. Physiol. 260 (Heart Circ. Physiol. 29):H569-H578; 1991.

    CAS  PubMed  Google Scholar 

  7. Burkhoff, D.; Sagawa, K. Ventricular efficiency predicted by an analytical model. Am. J. Physiol. 250 (Regulatory Integrated Comp. Physiol.): R1021–1027; 1986.

    CAS  PubMed  Google Scholar 

  8. Burkhoff, D.; Sugiura, S.; Yue, H.; Sagawa, K. Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am. J. Physiol. 252 (Heart Circ Physiol 21): H1218-H1227; 1987.

    CAS  PubMed  Google Scholar 

  9. Cohn, J.N. Abnormalities of peripheral sympathetic nervous system control in congestive heart failure (Review). Circulation 82:2 Suppl 159–67; 1990.

    Google Scholar 

  10. Elzinga, G.; Westerhof, N. The effect of an increase in inotropic state and end-diastolic volume on the pumping ability of the feline left heart. Circ. Res. 42:620–628; 1978.

    CAS  PubMed  Google Scholar 

  11. Elzinga, G.; Westerhof, N. End-diastolic volume and source impedance of the heart. In: The physiological basis of Starling's Law of the heart. Ciba Foundation Symposium; 1974: 24:242–255.

    Google Scholar 

  12. Freeman, G.L.; Little, W.C.; O'Rourke, R.A. The effect of vasoactive agents on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circulation 74:1107–1113; 1986.

    CAS  PubMed  Google Scholar 

  13. Hunter, W.C. End-systolic pressure as a balance between opposing effects of ejection. Circ. Res. 64:265–275; 1989.

    CAS  PubMed  Google Scholar 

  14. Hunter, W.C.; Alexander, J.; Ifarraguerri, A. Effect of arterial wave reflections on the coupling between left ventricle and aorta. Proceedings of the 9th International Conference of the Cardiovascular System Dynamics Society, Halifax, N.S., Canada. 1988: pp. 177–180.

  15. Jones, S.R.; de Tombe, P.P.; Burkhoff, D.; Kass, D.A. Optimization of total ventricular efficiency studied in isolated canine hearts (Abstract). Circulation 82:III-695; 1990.

    Google Scholar 

  16. Kass, D.A.; Beyar, R.; Lankford, E.; Heard, M.; Maughan, W.L.; Sagawa, K. Influence of contractile state on curvilinearity ofin situ end-systolic pressure-volume relations. Circulation 79:167–178; 1989.

    CAS  PubMed  Google Scholar 

  17. Kass, D.A.; Grayson, R.; Marino, P. Pressure-volume analysis as a method for quantifying simultaneous drug (amrinone) effects on arterial load and contractile statein vivo. J. Am. Coll. Cardiol. 16:726–732; 1990.

    CAS  PubMed  Google Scholar 

  18. Kass, D.A.; Maughan, W.L. From ‘Emax’ to pressure-volume relations: A broader view. Circulation 77:1203–1212; 1988.

    CAS  PubMed  Google Scholar 

  19. Kass, D.A.; Maughan, W.L.; Guo, Z.M.; Kono, A.; Sunagawa, K.; Sagawa, K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: Experimental and theoretical analysis based on pressure-volume relationship. Circulation 76:1422–1436; 1987.

    CAS  PubMed  Google Scholar 

  20. Kass, D.A.; Midei, M.; Graves, W.; Maughan, W.L. Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Cath. Cardiovasc. Diag. 15:192–202; 1988.

    CAS  Google Scholar 

  21. Kass, D.A.; Yamazacki, T.; Burkhoff, D.; Maughan, W.L.; Sagawa, K. Determination of left ventricular end systolic pressure-volume relationshipsin situ by the conductance (volume) catheter technique in anesthetized dogs. Circulation 73:586–595; 1986.

    CAS  PubMed  Google Scholar 

  22. Kelly, R.P.; Ting, C.T.; Maughan, W.L.; Chang, M.S.; Kass, D.A. Similarity of arterial elastance estimates from ventricular and vascular parameters in man (Abstract). Circulation 82:III-696; 1990.

    Google Scholar 

  23. Kobota, T.; Alexander, J.; Itaya, R.; Todaka, K.; Sugimachi, M.; Sunagawa, K. Dynamic matching of the left ventricle with the arterial system by carotid sinus baroreflex (Abstract). Circulation 82:III-695; 1990.

    Google Scholar 

  24. Laskey, W.K.; Kussmaul, W.G. Arterial wave reflection in cardiac failure. Circulation 75:711–722; 1987.

    CAS  PubMed  Google Scholar 

  25. Latham, R.D.; Rubal, B.J.; Sipkema, P.; Westerhof, N.; Robinowitz, M.; Walsh, R.A. Ventricular/vascular coupling and regional arterial dynamics in the chronically hypertensive baboon: Correlation with cardiovascular structural adaptation. Circ. Res. 63:798–811; 1988.

    CAS  PubMed  Google Scholar 

  26. Latson, T.W.; Hunter, W.C.; Burkhoff, D.; Sagawa, K. Time sequential prediction of ventricular-vascular interactions. Am. J. Physiol. 251:H1341-H1353; 1986.

    CAS  PubMed  Google Scholar 

  27. Latson, T.W.; Hunter, W.C.; Katoh, N.; Sagawa, K. Effect of nitroglycerin on aortic impedance, diameter, and pulse wave velocity. Circ. Res. 62:884–890; 1988.

    CAS  PubMed  Google Scholar 

  28. Little, W.C.; Cheng, C.P.; Peterson, T.; Vinten-Johansen, J. Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation 78:736–745; 1988.

    CAS  PubMed  Google Scholar 

  29. Little, W.C.; Freeman, G.L. Description of LV pressure-volume relations by time-varying elastance and source resistance. Am. J. Physiol. 253:H83-H90; 1987.

    CAS  PubMed  Google Scholar 

  30. Maughan, W.L.; Sunagawa, K.; Burkhoff, D.; Sagawa, K. Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circ. Res. 54:595–610; 1984.

    CAS  PubMed  Google Scholar 

  31. Maughan, W.L.; Sunagawa, K.; Sagawa, K. Effects of arterial input impedance on mean ventricular pressure-flow relation. Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H978-H983; 1984.

    CAS  PubMed  Google Scholar 

  32. McKay, R.G.; Aroesty, J.M.; Heller, G.V.; Royal, H.D.; Grossman, W. Assessment of the end-systolic pressure-volume relationship in human beings with the use of a time varying elastance model. Circulation 74:97–104; 1986.

    CAS  PubMed  Google Scholar 

  33. Milnor, W.R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570; 1975.

    CAS  PubMed  Google Scholar 

  34. Mohanty, P.K.; Arrowood, J.A.; Ellenbogen, K.A.; Thames, M.D. Neurohumoral and hemodynamic effects of lower body negative pressure in patients with congestive heart failure. Am. Heart J. 118:78–85; 1989.

    Article  CAS  PubMed  Google Scholar 

  35. Murgo, J.P.; Westerhof, N.; Giolma, J.P.; Altobelli, S.A. Aortic input impedance in normal man: Relationship to pressure wave shapes. Circulation 62:105–116; 1980.

    CAS  PubMed  Google Scholar 

  36. Myhre, E.S.P.; Johansen, A.; Piene, H. Optimal matching between canine left ventricle and afterload. Am. J. Physiol. 254:H1051-H1058; 1988.

    CAS  PubMed  Google Scholar 

  37. Nobel, M.I.M.; Gabe, I.T.; Trenchard, D.; Guz, A. Blood pressure and flow in the ascending aorta of conscious dogs. Cardiovasc. Res. 1:9–20; 1967.

    Google Scholar 

  38. O'Rourke, M.F. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J. Appl. Physiol. 23:139–149; 1967.

    PubMed  Google Scholar 

  39. O'Rourke, M.F. Steady and pulsatile energy losses in the systemic circulation under normal conditions and in simulated arterial disease. Cardiovasc. Res. 1:313–316; 1967.

    PubMed  Google Scholar 

  40. O'Rourke, M.F., Avolio, A.P. Pulsatile flow and pressure in human systemic arteries: Studies in man and in a multi-branched model of the systemic arterial tree. Circ. Res. 44:363–372; 1980.

    Google Scholar 

  41. O'Rourke, M.F.; Taylor, M.G. Input impedance of the systemic circulation. Circ. Res. 20:365–380; 1967.

    PubMed  Google Scholar 

  42. Piene, H. Impedance matching between ventricle and load. Ann. Biomed. Eng. 12:191–207; 1984.

    CAS  PubMed  Google Scholar 

  43. Piene, H.; Myhre, E.S.P. Left ventricle-aortic coupling: Prediction of contraction pattern. Am. J. Physiol. 247:H531-H540; 1984.

    CAS  PubMed  Google Scholar 

  44. Roy, C.S. The elastic properties of the arterial wall. J. Physiol. 3:125–159; 1880.

    Google Scholar 

  45. Sagawa, K.; Maughan, W.L.; Suga, H.; Sunagawa, K. Cardiac contraction and the pressure-volume relationship. New York: Oxford University Press; 1988.

    Google Scholar 

  46. Schroff, S.G.; Janicki, J.S.; Weber, K.T. Evidence and quantification of left ventricular resistance. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H353; 1983.

    Google Scholar 

  47. Sodums, M.T.; Badke, F.R.; Starling, M.R.; Little, W.C.; O'Rourke, R.A. Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume realtionships in conscious dogs. Circ. Res. 54:731–737; 1984.

    CAS  PubMed  Google Scholar 

  48. Suga, H.; Hayashi, T.; Sirahata, M. Ventricular systolic pressure volume area as predictor of cardiac oxygen consumption. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H320; 1981.

    CAS  PubMed  Google Scholar 

  49. Sugimachi, M.; Sunagawa, K.; Todaka, K.; Hayashida, K.; Noma, M.; Ando, H.; Egashira, S.; Tomoike, H.; Nakamura, M. Does the canine left ventricle operate at the optimal contractility and heart rate to minimize oxygen consumption during exercise and left ventricular dysfunction? Proccedings of the 9th International Conference of the Cardiovascular System Dynamics Society, Halifax, N.S., Canada. 1988: pp. 227–230.

  50. Sunagawa, K.; Maughan, W.L.; Burkhoff, D.; Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am. J. Physiol. 245:H773-H780; 1983.

    CAS  PubMed  Google Scholar 

  51. Sunagawa, K.; Maughan, W.L.; Sagawa, K. Optimal resistance for the maximal stroke work studied in isolated canine left ventricle. Circ. Res. 56:586–595; 1985.

    CAS  PubMed  Google Scholar 

  52. Sunagawa, K.; Sagawa, K.; Maughan, W.L. Ventricular interaction with the loading system. Ann. Biomed. Eng. 12:163–189; 1984.

    CAS  PubMed  Google Scholar 

  53. Sunagawa, K.; Sagawa, K.; Maughan, W.L. Ventricular interaction with the vascular system in terms of pressure-volume relationships. In Yin, F.C.P., ed. Ventricular/vascular coupling. New York: Springer-Verlag; 1987: pp. 210–239.

    Google Scholar 

  54. Taylor, M.G. Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circ. Res. 18:585–595; 1966.

    CAS  PubMed  Google Scholar 

  55. Ting, C.T.; Brin, K.P.; Lin, S.J.; Wang, S.P.; Chang, M.S.; Chiang, B.N.; Yin, F.C.P. Arterial hemodynamics in human hypertension. J. Clin. Invest. 78:1462–1471; 1986.

    CAS  PubMed  Google Scholar 

  56. Van den Horn, G.J.; Westerhof, N.; Elzinga, G. Feline left ventricle does not always operate at optimum power output. Am. J. Physiol. 250:H961-H967; 1986.

    PubMed  Google Scholar 

  57. Van den Horn, G.J.; Westerhof, N.; Elzinga, G. Interaction of heart and arterial system. Ann. Biomed. Eng. 12:151–162; 1984.

    PubMed  Google Scholar 

  58. Van den Horn, G.J.; Westerhof, N.; Elzinga, G. Optimal power generation by the left ventricle. Circ. Res. 56:252–261; 1985.

    PubMed  Google Scholar 

  59. Winnem, B.M.; Piene, H. Left ventricular end-systolic pressure volume relations in healthy young men. Eur. Heart J. 7:961–972; 1986.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kass, D.A., Kelly, R.P. Ventriculo-arterial coupling: Concepts, assumptions, and applications. Ann Biomed Eng 20, 41–62 (1992). https://doi.org/10.1007/BF02368505

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368505

Keywords

Navigation