Skip to main content

Advertisement

Log in

Myocardial perfusion scintigraphy: the evidence

A consensus conference organised by the British Cardiac Society, the British Nuclear Cardiology Society and the British Nuclear Medicine Society, endorsed by the Royal College of Physicians of London and the Royal College of Radiologists

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

This review summarises the evidence for the role of myocardial perfusion scintigraphy (MPS) in patients with known or suspected coronary artery disease. It is the product of a consensus conference organised by the British Cardiac Society, the British Nuclear Cardiology Society and the British Nuclear Medicine Society and is endorsed by the Royal College of Physicians of London and the Royal College of Radiologists. It was used to inform the UK National Institute of Clinical Excellence in their appraisal of MPS in patients with chest pain and myocardial infarction. MPS is a well-established, non-invasive imaging technique with a large body of evidence to support its effectiveness in the diagnosis and management of angina and myocardial infarction. It is more accurate than the exercise ECG in detecting myocardial ischaemia and it is the single most powerful technique for predicting future coronary events. The high diagnostic accuracy of MPS allows reliable risk stratification and guides the selection of patients for further interventions, such as revascularisation. This in turn allows more appropriate utilisation of resources, with the potential for both improved clinical outcomes and greater cost-effectiveness. Evidence from modelling and observational studies supports the enhanced cost-effectiveness associated with MPS use. In patients presenting with stable or acute chest pain, strategies of investigation involving MPS are more cost-effective than those not using the technique. MPS also has particular advantages over alternative techniques in the management of a number of patient subgroups, including women, the elderly and those with diabetes, and its use will have a favourable impact on cost-effectiveness in these groups. MPS is already an integral part of many clinical guidelines for the investigation and management of angina and myocardial infarction. However, the technique is underutilised in the UK, as judged by the inappropriately long waiting times and by comparison with the numbers of revascularisations and coronary angiograms performed. Furthermore, MPS activity levels in this country fall far short of those in comparable European countries, with about half as many scans being undertaken per year. Currently, the number of MPS studies performed annually in the UK is 1,200/million population/year. We estimate the real need to be 4,000/million/year. The current average waiting time is 20 weeks and we recommend that clinically appropriate upper limits of waiting time are 6 weeks for routine studies and 1 week for urgent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Acc:

Diagnostic accuracy

ACS:

Acute coronary syndromes

BCS:

British Cardiac Society

BNCS:

British Nuclear Cardiology Society

BNMS:

British Nuclear Medicine Society

CABG:

Coronary artery bypass grafting

CHD:

Coronary heart disease

CT:

Computed X-ray tomography

LBBB:

Left bundle branch block

MI:

Myocardial infarction

MIBI:

Technetium-99m 2-methoxy-isobutyl-isonitrile

MPS:

Myocardial perfusion scintigraphy

NSF:

National Service Framework for Cardiovascular Disease

NSTEMI:

Non-ST segment elevation myocardial infarction

PCI:

Percutaneous coronary intervention

Q:

Quantitative analysis

QALY:

Quality-adjusted life-year

RCP:

Royal College of Physicians of London

RCR:

Royal College of Radiologists

Sens:

Sensitivity

Spec:

Specificity

SPET:

Single-photon emission tomography

STEMI:

ST segment elevation myocardial infarction

Tetro or tetrofosmin:

Technetium-99m 1,2-bis[bis(2-ethoxyethyl) phosphino] ethane

201Tl or thallium:

Thallium-201 thallous chloride

UA:

Unstable angina

V:

Visual analysis

References

  1. Rochmis P, Blackburn H. Exercise tests. A survey of procedures, safety and litigation experience in approximately 170,000 tests. JAMA 1971; 217:1061–1066.

    Article  CAS  PubMed  Google Scholar 

  2. Cerqueira MD, Verani MS, Schwaiger M, et al. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan multicenter trial registry. J Am Coll Cardiol 1994; 23:3849.

    Google Scholar 

  3. Lette J, Tatum JL, Fraser S, et al. Safety of dipyridamole testing in 73,806 patients: the multicentre dipyridamole safety study. J Nucl Cardiol 1995; 2:3–17.

    CAS  PubMed  Google Scholar 

  4. Mertes H, Sawada SG, Ryan T, et al. Symptoms, adverse effects, and complications associated with dobutamine stress echocardiography: experience in 1118 patients. Circulation 1993; 88:15–19.

    CAS  PubMed  Google Scholar 

  5. Administration of Radioactive Substances Advisory Committee. Notes for guidance on the clinical administration of radiopharmaceuticals and use of sealed radioactive sources. Didcot, UK: ARSAC Support Unit, National Radiological Protection Board, 1998.

  6. Coulden RA, Readman LP. Coronary angiography—an analysis of radiographic practice in the UK. Br J Radiol 1993; 784:327–331.

    Google Scholar 

  7. Mountford PJ. Risk assessment of the nuclear medicine patient. Br J Radiol 1997; 70:671–684.

    CAS  PubMed  Google Scholar 

  8. Lozner EC, Johnson LW, Johnson S, et al. Coronary arteriography 1984–1987: a report of the registry of the Society for Cardiac Angiography and Interventions II: an analysis of 218 deaths related to coronary angiography. Cathet Cardiovasc Diag 1989; 17:11–14.

    CAS  Google Scholar 

  9. Irwig L, Tosteson ANA, Gatsonis C, et al. Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med 1994; 120:667–676.

    CAS  PubMed  Google Scholar 

  10. Bossuyt PM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Br Med J 2003; 326:41–44.

    Article  Google Scholar 

  11. Tamaki N, Yonekura Y, Mukai T, et al. Stress thallium-201 transaxial emission computed tomography: quantitative versus qualitative analysis for evaluation of coronary artery disease. J Am Coll Cardiol 1984; 4:1213–1221.

    CAS  PubMed  Google Scholar 

  12. DePasquale EE, Nody AC, DePuey EG, et al. Quantitative rotational thallium-201 tomography for identifying and localising coronary artery disease. Circulation 1988; 2:316–327.

    Google Scholar 

  13. Fintel DJ, Links JM, Brinker JA, et al. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol 1989; 13:600–612.

    CAS  PubMed  Google Scholar 

  14. Iskandrian AS, Heo J, Kong B, Lyons E. Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: analysis of 461 patients. J Am Coll Cardiol 1989; 14:1477–1486.

    CAS  PubMed  Google Scholar 

  15. Maddahi J, Van Train K, Pringent F, et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique. J Am Coll Cardiol 1989; 14:1689–1699.

    Google Scholar 

  16. Mahmarian JJ, Boyce TM, Goldberg RK, et al. Quantitative exercise thallium-201 single photon emission computed tomography for the enhanced diagnosis of ischaemic heart disease. J Am Coll Cardiol 1990; 15:318–329.

    CAS  PubMed  Google Scholar 

  17. Van Train KF, Maddahi J, Berman DS, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1990; 31:1168–1179.

    PubMed  Google Scholar 

  18. Coyne EP, Belvedere DA, Vande Streek PR, et al. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise thallium testing in the diagnosis of coronary artery disease. J Am Coll Cardiol 1991; 17:1289–1294.

    CAS  PubMed  Google Scholar 

  19. Quinones MA, Verani MS, Haichin RM, et al. Exercise echocardiography versus Tl-201 single-photon emission computed tomography in evaluation of coronary artery disease. Circulation 1992; 85:1026–1031.

    CAS  PubMed  Google Scholar 

  20. Chae SC, Heo J, Iskandrian AS, Wasserleben V, Cave V. Identification of extensive coronary artery disease in women by exercise single-photon emission computed tomographic (SPECT) thallium imaging. J Am Coll Cardiol 1993; 21:1305–1311.

    CAS  PubMed  Google Scholar 

  21. Grover-McKay M, Milne N, Atwood E, Lyons KP. Comparison of thallium-201 single-photon emission computed tomographic scintigraphy with intravenous dipyridamole and arm exercise. Am Heart J 1994; 127:1516–1520.

    CAS  PubMed  Google Scholar 

  22. Tamaki N, Takahashi N, Kawamoto M, et al. Myocardial tomography using technetium-99m tetrofosmin to evaluate coronary artery disease. J Nucl Med 1994; 35:594–600.

    Google Scholar 

  23. Ho Y-L, Wu C-C, Huang P-J, et al. Dobutamine stress echocardiography compared with exercise thallium-201 single-photon emission computed tomography in detecting coronary artery disease—effect of exercise level on accuracy. Cardiology 1997; 88:379–385.

    CAS  PubMed  Google Scholar 

  24. Kiat H, Van Train KF, Maddahi J, et al. Development and prospective application of quantitative 2-day stress-rest Tc-99m methoxy isobutyl isonitrile SPECT for the diagnosis of coronary artery disease. Am Heart J 1990; 120:1255–1266.

    CAS  PubMed  Google Scholar 

  25. Pozzoli MMA, Fioretti P, Salustri A, et al. Exercise echocardiography and technetium-99m MIBI single-photon emission computed tomography in the detection of coronary artery disease. Am J Cardiol 1991; 67:350–355.

    CAS  PubMed  Google Scholar 

  26. Solot G, Hermans J, Merlo P, et al. Correlation of Tc-99m sestamibi SPECT with coronary angiography in general hospital practice. Nucl Med Commun 1993; 14:23–29.

    CAS  PubMed  Google Scholar 

  27. Marwick TH, D’Hondt AM, Mairesse GH, et al. Comparative ability of dobutamine and exercise stress in inducing myocardial ischaemia in active patients. Br Heart J 1994; 72:31–38.

    CAS  PubMed  Google Scholar 

  28. Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994; 35:609–618.

    PubMed  Google Scholar 

  29. Heo J, Cave V, Wasserleben V, Iskandrian AS. Planar and tomographic imaging with technetium-99m-labeled tetrofosmin: correlation with thallium-201 and coronary angiography. J Nucl Cardiol 1994; 1:317–324.

    CAS  PubMed  Google Scholar 

  30. Benoit T, Vivegnis D, Lahiri A, et al. Tomographic myocardial imaging with technetium-99m tetrofosmin. Eur Heart J 1996; 17:635–642.

    CAS  PubMed  Google Scholar 

  31. Shanoudy H, Raggi P, Beller GA, et al. Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol 1998; 31:331–337.

    Article  CAS  PubMed  Google Scholar 

  32. Francisco DA, Collins SM, Go RT, et al. Tomographic thaalium-201 myocardial perfusion scintigrams after maximal coronary artery vasodilation with intravenous dipyridamole. Circulation 1982; 66:370–379.

    CAS  PubMed  Google Scholar 

  33. Huikuri HV, Korhonen UR, Airaksinen KEJ, et al. Comparison of dipyridamole-handgrip test and bicycle exercise test for thallium tomographic imaging. Am J Cardiol 1988; 61:264–268.

    CAS  PubMed  Google Scholar 

  34. Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990; 31:1899–1905.

    CAS  PubMed  Google Scholar 

  35. Mendelson MA, Spies SM, Spies WG, et al. Usefulness of single-photon emission computed tomography of thallium-201 uptake after dipyridamole infusion for detection of coronary artery disease. Am J Cardiol 1992; 69:1150–1155.

    CAS  PubMed  Google Scholar 

  36. Cramer M-J, Verzijlbergen JF, Van der Wall EE, et al. Head-to-head comparison between technetium-99m-sestamibi and thallium-201 tomographic imaging for the detection of coronary artery disease using combined dipyridamole-exercise stress. Coron Artery Dis 1994; 5:787–791.

    CAS  PubMed  Google Scholar 

  37. Ho F-M, Huang P-J, Liau C-S, et al. Dobutamine stress echocardiography compared with dipyridamole thallium-201 single-photon emission computed tomography in detecting coronary artery disease. Eur Heart J 1995; 16:570–575.

    CAS  PubMed  Google Scholar 

  38. Watanabe K, Sekiya M, Ikeda S, et al. Comparison of adenosine triphosphate and dipyridamole in diagnosis by thallium-201 myocardial scintigraphy. J Nucl Med 1997; 38:577–581.

    CAS  PubMed  Google Scholar 

  39. Tartagni F, Dondi M, Limonetti P, et al. Dipyridamole technetium-99m 2-methoxy isobutyl isonitrile tomoscintigraphic imaging for identifying diseased coronary vessels: comparison with thallium-201 stress-rest study. J Nucl Med 1991; 32:369–376.

    CAS  PubMed  Google Scholar 

  40. Miller DD, Younis LT, Chaitman BR, Stratmann H. Diagnostic accuracy of dipyridamole technetium-99m-labeled sestamibi myocardial tomography for detection of coronary artery disease. J Nucl Cardiol 1997; 4:18–24.

    CAS  PubMed  Google Scholar 

  41. Schillaci O, Moroni C, Scopinaro F, et al. Technetium-99m sestamibi myocardial tomography based on dipyridamole echocardiography testing in hypertensive patients with chest pain. Eur J Nucl Med 1997; 24:774–778.

    Article  CAS  PubMed  Google Scholar 

  42. Soman P, Khattar R, Senior R, Lahiri A. Inotropic stress with arbutamine is superior to vasodilator stress with dipyridamole for the detection of reversible ischaemia with Tc-99m sestamibi single-photon emission computed tomography. J Nucl Cardiol 1997; 4:364–371.

    CAS  PubMed  Google Scholar 

  43. Ogilby JD, Kegel JG, Heo J, Iskandrian AE. Correlation between haemodynamic changes and tomographic sestamibi imaging during dipyridamole-induced coronary hyperaemia. J Am Coll Cardiol 1998; 31:75–82.

    Article  CAS  PubMed  Google Scholar 

  44. Santoro GM, Sciagra R, Buonamici P, et al. Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography and perfusion tomography as first-line examination for chest pain in patients without history of coronary artery disease. J Nucl Cardiol 1998; 5:19–27.

    CAS  PubMed  Google Scholar 

  45. He Z-X, Iskandrian AS, Gupta NC, Verani MS. Assessing coronary artery disease with dipyridamole technetium-99m tetrofosmin SPECT: a multicenter trial. J Nucl Med 1997; 38:44–48.

    CAS  PubMed  Google Scholar 

  46. Nguyen T, Heo J, Ogilby JD, Iskandrian AS. Single photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperaemia: correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography. J Am Coll Cardiol 1990; 16:1375–1383.

    CAS  PubMed  Google Scholar 

  47. Verani MS, Mahmarian JJ, Hixson JB, et al. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 1990; 82:80–87.

    CAS  PubMed  Google Scholar 

  48. Nishimura S, Mahmarian JJ, Boyce TM, Verani MS. Quantitative thallium-201 single-photon emission computed tomography during maximal pharmacologic coronary vasodilation with adenosine for assessing coronary artery disease. J Am Coll Cardiol 1991; 18:736–745.

    CAS  PubMed  Google Scholar 

  49. Allman KC, Berry J, Sucharski LA, et al. Determination of extent and location of coronary artery disease in patients without prior myocardial infarction by thallium-201 tomography with pharmacologic stress. J Nucl Med 1992; 33:2067–2073.

    CAS  PubMed  Google Scholar 

  50. Pennell DJ, Mavrogeni SI, Forbat SM, et al. Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol 1995; 25:1300–1309.

    Google Scholar 

  51. Mohiuddin SM, Ravage CK, Esterbrooks DJ, et al. The comparative safety and diagnostic accuracy of adenosine myocardial perfusion imaging in women versus men. Pharmacotherapy 1996; 16:646–651.

    CAS  PubMed  Google Scholar 

  52. Amanullah AM, Bevegard S, Lindvall K, Aasa M. Assessment of left ventricular wall motion in angina pectoris by two-dimensional echocardiography and myocardial perfusion by technetium-99m sestamibi tomography during adenosine-induced coronary vasodilation and comparison with coronary angiography. Am J Cardiol 1993; 72:983–989.

    CAS  PubMed  Google Scholar 

  53. Marwick T, Willemart B, D’Hondt A-M, et al. Selection of the optimal nonexercise stress for the evaluation of ischaemic regional myocardial dysfunction and malperfusion. Circulation 1993; 87:345–354.

    Google Scholar 

  54. Jamil G, Ahlberg AW, Elliott MD, et al. Impact of limited treadmill exercise on adenosine Tc-99m sestamibi single-photon emission computed tomographic myocardial perfusion imaging in coronary artery disease. Am J Cardiol 1999; 84:400–403.

    Article  CAS  PubMed  Google Scholar 

  55. Kapur A, Latus KA, Davies G, et al. A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur J Nucl Med Mol Imaging 2002; 29:1608–1616.

    Article  CAS  PubMed  Google Scholar 

  56. Pennell DJ, Underwood SR, Swanton RH, et al. Dobutamine thallium myocardial perfusion tomography. J Am Coll Cardiol 1991; 18:1471–1479.

    CAS  PubMed  Google Scholar 

  57. Warner MF, Pippin JJ, DiSciascio G, et al. Assessment of thallium scintigraphy and echocardiography during dobutamine infusion for the detection of coronary artery disease. Cathet Cardiovasc Diagn 1993; 29:122–127.

    CAS  PubMed  Google Scholar 

  58. Hays JT, Mahmarian JJ, Cochran AJ, Verani MS. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary artery disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol 1993; 21:1583–1590.

    CAS  PubMed  Google Scholar 

  59. Huang P-J, Ho Y-L, Wu C-C, et al. Simultaneous dobutamine stress echocardiography and thallium-201 perfusion imaging for the detection of coronary artery disease. Cardiology 1997; 88:556–562.

    CAS  PubMed  Google Scholar 

  60. Huang P-J, Yen R-F, Chieng P-U, et al. Do β-blockers affect the diagnostic sensitivity of dobutamine stress thallium-201 single photon emission computed tomographic imaging? J Nucl Cardiol 1998; 5:34–39.

    CAS  PubMed  Google Scholar 

  61. Caner B, Karanfil A, Uysal U, et al. Effect of an additional atropine injection during dobutamine infusion for myocardial SPET. Nucl Med Commun 1997; 18:567–573.

    CAS  PubMed  Google Scholar 

  62. Gunalp B, Dokumaci B, Uyan C, et al. Value of dobutamine technetium-99m-sestamibi SPECT and echocardiography in the detection of coronary artery disease compared with coronary angiography. J Nucl Med 1993; 34:889–894.

    CAS  PubMed  Google Scholar 

  63. Forster T, McNeill AJ, Salustri A, et al. Simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 1993; 21:1591–1596.

    Google Scholar 

  64. Marwick T, D’Hondt A-M, Baudhuin T, et al. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol 1993; 22:159–167.

    Google Scholar 

  65. Mairesse GH, Marwick TH, Vanoverschelde J-L, et al. How accurate is dobutamine stress electrocardiography for detection of coronary artery disease? Comparison with two-dimensional echocardiography and technetium-99m methoxy isobutyl isonitrile perfusion scintigraphy. J Am Coll Cardiol 1994; 24:920–927.

    Google Scholar 

  66. Senior R, Sridhara BS, Anagnostou E, et al. Synergistic value of simultaneous stress dobutamine sestamibi single-photon emission computerized tomography and echocardiography in the detection of coronary artery disease. Am Heart J 1994; 128:713–718.

    CAS  PubMed  Google Scholar 

  67. Di Bello V, Bellina CR, Gori E, et al. Incremental diagnostic value of dobutamine stress echocardiography and dobutamine scintigraphy (technetium-99m-labeled sestamibi single-photon emission computed tomography) for assessment of presence and extent of coronary artery disease. J Nucl Cardiol 1996; 3:212–220.

    PubMed  Google Scholar 

  68. Iftihar I, Koutelou M, Mahmarian JJ, Verani MS. Simultaneous perfusion tomography and radionuclide angiography during dobutamine stress. J Nucl Med 1996; 37:1306–1310.

    PubMed  Google Scholar 

  69. Kisacik HL, Ozdemir K, Altinyay E, et al. Comparison of exercise stress testing with simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computerized tomography for diagnosis of coronary artery disease. Eur Heart J 1996; 17:113–119.

    CAS  PubMed  Google Scholar 

  70. Slavich GA, Guerra UP, Morocutti G, et al. Feasibility of simultaneous Tc-99m sestamibi and 2D-echo cardiac imaging during dobutamine pharmacologic stress: preliminary results in a female population. Int J Card Imaging 1996; 12:113–118.

    CAS  PubMed  Google Scholar 

  71. San Roman JA, Vilacosta I, Castillo JA, et al. Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 1998; 80:370–376.

    PubMed  Google Scholar 

  72. Elhendy A, von Domburg RT, Bax JJ, et al. Non-invasive diagnosis of coronary artery stenosis in women with limited exercise capacity: comparison of dobutamine stress echocardiography and Tc-99m sestamibi single-photon emission CT. Chest 1998; 114:1097–1104.

    CAS  PubMed  Google Scholar 

  73. Taillefer R, DePuey G, Udelson JE, et al. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997; 29:69–77.

    CAS  PubMed  Google Scholar 

  74. Berman DS, Hayes SW, Shaw LJ, German G. Recent advances in myocardial perfusion imaging. Curr Prob Cardiol 2001; 26:54–59.

    Google Scholar 

  75. Rozanski A. Referral bias and the efficacy of radionuclide stress tests: problems and solutions. J Nucl Med 1992; 33:2074–2079.

    CAS  PubMed  Google Scholar 

  76. Maddahi J, Rodrigues E, Berman DS, Kiat H. State-of-the-art myocardial perfusion imaging. Cardiol Clin North Am 1994; 12:199–222.

    CAS  Google Scholar 

  77. Rozanski A, Diamond G, Berman DS, et al. The declining specificity of exercise radionuclide ventriculography. N Engl J Med 1983; 309:518–522.

    CAS  PubMed  Google Scholar 

  78. Roger VL, Pellikka PA, Bell MR, et al. Sex and test verification bias: impact on the diagnostic value of exercise echocardiography. Circulation 1997; 95:405–410.

    CAS  PubMed  Google Scholar 

  79. Begg CB, Greenes RA. Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 1983; 39:207–215.

    CAS  PubMed  Google Scholar 

  80. Diamond GA. Reverend Bayes’ silent majority: an alternative factor affecting sensitivity and specificity of exercise electrocardiography. Am J Cardiol 1986; 5:1175–1180.

    Google Scholar 

  81. Miller TD, Hodge DO, Christian TF, et al. Effects of adjustment for referral bias on the sensitivity and specificity of single photon emission computed tomography for the diagnosis of coronary artery disease. Am J Med 2002; 112:290–297.

    Article  PubMed  Google Scholar 

  82. Kiat H, Van Train KF, Friedman JD, et al. Quantitative stress-redistribution thallium-201 SPECT using prone imaging: methodologic development and validation. J Nucl Med 1992; 33:1509–1515.

    CAS  PubMed  Google Scholar 

  83. Detrano R, Janosi A, Lyons KP, et al. Factors affecting sensitivity and specificity of a diagnostic test: the exercise thallium scintigram. Am J Med 1988; 84:699–710.

    CAS  PubMed  Google Scholar 

  84. Heller GV, Ahmed I, Tilkemeier PL, et al. Comparison of chest pain, electrocardiographic changes and thallium-201 scintigraphy during varying exercise intensities in men with stable angina pectoris. Am J Cardiol 1991; 68:569–574.

    CAS  PubMed  Google Scholar 

  85. Hockings B, Saltissi S, Croft DN, Webb-Peploe MM. Effect of beta adrenergic blockade on thallium-201 myocardial perfusion imaging. Br Heart J 1983; 49:83–89.

    CAS  PubMed  Google Scholar 

  86. Martin GJ, Henkin RE, Scalon PJ. Beta blockers and the sensitivity of the thallium treadmill test. Chest 1987; 92:486–487.

    CAS  PubMed  Google Scholar 

  87. Strauss HW, Miller DD, Wittry MD, et al. Society of Nuclear Medicine procedure guideline for myocardial perfusion imaging. J Nucl Med 1998; 39:918–923.

    CAS  PubMed  Google Scholar 

  88. Sharir T, Rabinowitz B, Livschitz S, et al. Underestimation of extent and severity of coronary artery disease by dipyridamole stress thallium-201 single-photon emission computed tomographic myocardial perfusion imaging in patients taking antianginal drugs. J Am Coll Cardiol 1998; 31:1540–1546.

    Article  CAS  PubMed  Google Scholar 

  89. Ficaro EP, Fessler JA, Shreve PD, et al. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected Tc-99m sestamibi single-photon emission computed tomography. Circulation 1996; 93:463–473.

    CAS  PubMed  Google Scholar 

  90. Vidal R, Buvat I, Darcourt J, et al. Impact of attenuation correction by simultaneous emission/transmission tomography on visual assessment of thallium-201 myocardial perfusion images. J Nucl Med 1999; 40:1301–1309.

    CAS  PubMed  Google Scholar 

  91. Hendel RC. Berman DS, Cullom SJ, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 1999; 99:2742–2749.

    CAS  PubMed  Google Scholar 

  92. Links JM, Becker LC, Rigo P, et al. Combined corrections for attenuation, depth-dependent blur and motion in cardiac SPECT: a multicenter trial. J Nucl Cardiol 2000; 7:414–425.

    CAS  PubMed  Google Scholar 

  93. Shotwell M, Singh BM, Fontman C, et al. Improved coronary disease detection with quantitative attenuation-corrected Tl-201 images. J Nucl Cardiol 2002; 9:52–61.

    Article  PubMed  Google Scholar 

  94. DePuey EG, Rozanski A. Using gated technetium-99m sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995; 36:952–955.

    CAS  PubMed  Google Scholar 

  95. Smanio PE, Watson DD, Segalla DL, et al. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997; 30:1687–1692.

    Google Scholar 

  96. Choi JY, Lee KH, Kim SJ, et al. Gating provides improved accuracy for differentiating artifacts from true lesions in equivocal fixed defects on technetium-99m tetrofosmin perfusion SPECT. J Nucl Cardiol 1998; 5:395–401.

    CAS  PubMed  Google Scholar 

  97. Sharir T, Germano G, Kavanagh PB, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999; 100:1035–1042.

    CAS  PubMed  Google Scholar 

  98. Glover DK, Ruiz M, Yang JY, et al. Myocardial Tc-99m tetrofosmin uptake during adenosine-induced vasodilatation with either a critical or mild coronary stenosis: comparison with Tl-201 and regional myocardial blood flow. Circulation 1997; 96:2332–2338.

    PubMed  Google Scholar 

  99. Soman O, Taillefer R, DePuey EG, et al. Enhanced detection of reversible perfusion defects by Tc-99m sestamibi compared to Tc-99m tetrofosmin during vasodilator stress SPECT imaging in mild-to-moderate coronary artery disease. J Am Coll Cardiol 2001; 37:458–462.

    Google Scholar 

  100. Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging. A diagnostic tool comes of age. Circulation 1991; 83:363–381.

    CAS  PubMed  Google Scholar 

  101. Brown KA. Prognostic value of cardiac imaging in patients with known or suspected coronary artery disease: comparison of myocardial perfusion imaging, stress echocardiography, and positron emission tomography. Am J Cardiol 1995; 75:D35–D41.

    Article  Google Scholar 

  102. Brown KA. Prognostic value of myocardial perfusion imaging: state of the art and new developments. J Nucl Cardiol 1996; 3:516–537.

    CAS  PubMed  Google Scholar 

  103. Ladenheim ML, Pollock BH, Rozanski A, et al. Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol 1986; 7:464–471.

    CAS  PubMed  Google Scholar 

  104. Gill JB, Ruddy TD, Newell JB, Finkelstein DM, Strauss HW, Boucher CA. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987; 317:1486–1489.

    CAS  PubMed  Google Scholar 

  105. Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987; 9:752–759.

    Google Scholar 

  106. Gioia G, Milan E, Giubbini R, DePace N, Heo J, Iskandrian AS. Prognostic value of tomographic rest-redistribution thallium 201 imaging in medically treated patients with coronary artery disease and left ventricular dysfunction. J Nucl Cardiol 1996; 3:150–156.

    CAS  PubMed  Google Scholar 

  107. Johnson LL, Verdesca SA, Aude WY, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol 1997; 30:1641–1648.

    CAS  PubMed  Google Scholar 

  108. Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998; 97:535–543.

    PubMed  Google Scholar 

  109. Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001; 42:831–847.

    CAS  PubMed  Google Scholar 

  110. Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993; 22:665–670.

    Google Scholar 

  111. Klocke F, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging 2003. Personal communication.

  112. Shaw LJ, Hendel R, Borges-Neto S, et al. Prognostic value of normal exercise and adenosine99mTc-tetrofosmin SPECT imaging: results from the multicenter registry of 4,728 patients. J Nucl Med 2003; 44:134–139.

    PubMed  Google Scholar 

  113. Galassi AR, Azzarelli S, Tomaselli A, et al. Incremental prognostic value of technetium-99m-tetrofosmin exercise myocardial perfusion imaging for predicting outcomes in patients with suspected or known coronary artery disease. Am J Cardiol 2001; 88:101–106.

    Article  CAS  PubMed  Google Scholar 

  114. Vanzetto G, Ormezzano O, Fagret D, Comet M, Denis B, Machecourt J. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients: study in 1137 patients with 6-year follow- up. Circulation 1999; 100:1521–1527.

    CAS  PubMed  Google Scholar 

  115. Olmos LI, Dakik H, Gordon R, et al. Long-term prognostic value of exercise echocardiography compared with exercise201Tl, ECG, and clinical variables in patients evaluated for coronary artery disease. Circulation 1998; 98:2679–2686.

    CAS  PubMed  Google Scholar 

  116. Alkeylani A, Miller DD, Shaw LJ, et al. Influence of race on the prediction of cardiac events with stress technetium-99m sestamibi tomographic imaging in patients with stable angina pectoris. Am J Cardiol 1998; 81:293–297.

    Article  CAS  PubMed  Google Scholar 

  117. Snader CE, Marwick TH, Pashkow FJ, Harvey SA, Thomas JD, Lauer MS. Importance of estimated functional capacity as a predictor of all-cause mortality among patients referred for exercise thallium single-photon emission computed tomography: report of 3,400 patients from a single center. J Am Coll Cardiol 1997; 30:641–648.

    Article  CAS  PubMed  Google Scholar 

  118. Boyne TS, Koplan BA, Parsons WJ, Smith WH, Watson DD, Beller GA. Predicting adverse outcome with exercise SPECT technetium-99m sestamibi imaging in patients with suspected or known coronary artery disease. Am J Cardiol 1997; 79:270–274.

    Article  CAS  PubMed  Google Scholar 

  119. Geleijnse ML, Elhendy A, van Domburg RT, et al. Cardiac imaging for risk stratification with dobutamine-atropine stress testing in patients with chest pain. Echocardiography, perfusion scintigraphy, or both? Circulation 1997; 96:137–147.

    CAS  PubMed  Google Scholar 

  120. Heller GV, Herman SD, Travin MI, Baron JI, Santos-Ocampo C, McClellan JR. Independent prognostic value of intravenous dipyridamole with technetium-99m sestamibi tomographic imaging in predicting cardiac events and cardiac-related hospital admissions. J Am Coll Cardiol 1995; 26:1202–1208.

    Google Scholar 

  121. Machecourt J, Longere P, Fagret D, et al. Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. Study in 1,926 patients with follow-up at 33 months. J Am Coll Cardiol 1994; 23:1096–1106.

    CAS  PubMed  Google Scholar 

  122. Kamal AM, Fattah AA, Pancholy S, et al. Prognostic value of adenosine single-photon emission computed tomographic thallium imaging in medically treated patients with angiographic evidence of coronary artery disease. J Nucl Cardiol 1994; 1:254–261.

    CAS  PubMed  Google Scholar 

  123. Stratmann HG, Tamesis BR, Younis LT, Wittry MD, Miller DD. Prognostic value of dipyridamole technetium-99m sestamibi myocardial tomography in patients with stable chest pain who are unable to exercise. Am J Cardiol 1994; 73:647–652.

    CAS  PubMed  Google Scholar 

  124. Stratmann HG, Williams GA, Wittry MD, Chaitman BR, Miller DD. Exercise technetium-99m sestamibi tomography for cardiac risk stratification of patients with stable chest pain. Circulation 1994; 89:615–622.

    PubMed  Google Scholar 

  125. Groutars RG, Verzijlbergen JF, Muller AJ, et al. Prognostic value and quality of life in patients with normal rest thallium-201/stress technetium 99m-tetrofosmin dual-isotope myocardial SPECT. J Nucl Cardiol 2000; 7:333–341.

    CAS  PubMed  Google Scholar 

  126. Gibbons RJ, Hodge DO, Berman DS, et al. Long-term outcome of patients with intermediate-risk exercise electrocardiograms who do not have myocardial perfusion defects on radionuclide imaging. Circulation 1999; 100:2140–2145.

    CAS  PubMed  Google Scholar 

  127. Soman P, Parsons A, Lahiri N, Lahiri A. The prognostic value of a normal Tc-99m sestamibi SPECT study in suspected coronary artery disease. J Nucl Cardiol 1999; 6:252–256.

    CAS  PubMed  Google Scholar 

  128. Mark DB, Shaw L, Harrell FE, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 1991; 325:849–853.

    CAS  PubMed  Google Scholar 

  129. Deleted in proofs.

  130. Wagdy HM, Hodge D, Christian TF, Miller TD, Gibbons RJ. Prognostic value of vasodilator myocardial perfusion imaging in patients with left bundle-branch block. Circulation 1998; 97:1563–1570.

    CAS  PubMed  Google Scholar 

  131. Navare SM, Mather JF, Fowler MS, Shaw LJ, Heller GV. Are there differences in risk stratification of patients with known or suspected coronary disease between pharmacologic and exercise stress myocardial perfusion imaging? A meta-analysis [abstract]. J Nucl Cardiol 2002; 4:S22.

    Google Scholar 

  132. Bateman TM, O’Keefe JH Jr, Dong VM, Barnhart C, Ligon RW. Coronary angiography rates following stress SPECT scintigraphy. J Nucl Cardiol 1995; 2:217–223.

    CAS  PubMed  Google Scholar 

  133. O Keefe JH, Bateman TM, Ligon RW, et al. Outcome of medical versus invasive treatment for non high risk ischaemic heart disease. J Nucl Cardiol 1998; 5:28–33.

    PubMed  Google Scholar 

  134. Gibbons RJ, Antman EM, Alpert JS, et al. ACC/AHA guideline update for perioperative cardiovascular evaluation for noncardiac surgery. J Am Coll Cardiol 2002; 39:542–553.

    Article  PubMed  Google Scholar 

  135. Boucher CA, Brewster DC, Darling C, Okada R, Strauss HW. Determination of cardiac risk by dipyridamole-thallium imaging before peripheral vascular surgery. N Engl J Med 1985; 312:389–394.

    CAS  PubMed  Google Scholar 

  136. Cutler BS, Leppo JA. Dipyridamole thallium 201 scintigraphy to detect coronary artery disease before abdominal aortic surgery. J Vasc Surg 1987; 5:91–100.

    Article  CAS  PubMed  Google Scholar 

  137. Fletcher JP, Antico VF, Gruenewald S, Kershaw LZ. Dipyridamole-thallium scan for screening of coronary artery disease prior to vascular surgery. J Cardiovasc Surg (Torino) 1988; 29:666–669.

    Google Scholar 

  138. Sachs RN, Tellier P, Larmignat P, et al. Assessment by dipyridamole-thallium-201 myocardial scintigraphy of coronary risk before peripheral vascular surgery. Surgery 1988; 103:584–587.

    CAS  PubMed  Google Scholar 

  139. Eagle KA, Coley CM, Newell JB, et al. Combining clinical and thallium data optimizes preoperative assessment of cardiac risk before major vascular surgery. Ann Intern Med 1989; 110:859–866.

    Google Scholar 

  140. McEnroe CS, O’Donnell RF, Jr., Yeager A, Konstam M, Mackey WC. Comparison of ejection fraction and Goldman risk factor analysis of dipyridamole-thallium-201 studies in the evaluation of cardiac morbidity after aortic aneurysm surgery. J Vasc Surg 1990; 11:497–504.

    Article  CAS  PubMed  Google Scholar 

  141. Younis LT, Aguirre F, Byers S, et al. Perioperative and long-term prognostic value of intravenous dipyridamole thallium scintigraphy in patients with peripheral vascular disease. Am Heart J 1990; 119:1287–1292.

    CAS  PubMed  Google Scholar 

  142. Mangano DT, London MJ, Tubau JF, et al. Dipyridamole thallium-201 scintigraphy as a preoperative screening test. A reexamination of its predictive potential. Study of Perioperative Ischemia Research Group. Circulation 1991; 84:493–502.

    CAS  PubMed  Google Scholar 

  143. Strawn DJ, Guernsey JM. Dipyridamole thallium scanning in the evaluation of coronary artery disease in elective abdominal aortic surgery. Arch Surg 1991; 126:880–884.

    CAS  PubMed  Google Scholar 

  144. Watters TA, Botvinick EH, Dae MW, et al. Comparison of the findings on preoperative dipyridamole perfusion scintigraphy and intraoperative transesophageal echocardiography: implications regarding the identification of myocardium at ischemic risk. J Am Coll Cardiol 1991; 18:93–100.

    CAS  PubMed  Google Scholar 

  145. Hendel RC, Whitfield SS, Villegas BJ, Cutler BS, Leppo JA. Prediction of late cardiac events by dipyridamole thallium imaging in patients undergoing elective vascular surgery. Am J Cardiol 1992; 70:1243–1249.

    CAS  PubMed  Google Scholar 

  146. Lette J, Waters D, Cerino M, Picard M, Champagne P, Lapointe J. Preoperative coronary artery disease risk stratification based on dipyridamole imaging and a simple three-step, three-segment model for patients undergoing noncardiac vascular surgery or major general surgery. Am J Cardiol 1992; 69:1553–1558.

    CAS  PubMed  Google Scholar 

  147. Madsen PV, Vissing M, Munck O, Kelbaek H. A comparison of dipyridamole thallium 201 scintigraphy and clinical examination in the determination of cardiac risk before arterial reconstruction. Angiology 1992; 43:306–311.

    CAS  PubMed  Google Scholar 

  148. Brown KA, Rowen M. Extent of jeopardized viable myocardium determined by myocardial perfusion imaging best predicts perioperative cardiac events in patients undergoing noncardiac surgery. J Am Coll Cardiol 1993; 21:325–330.

    CAS  PubMed  Google Scholar 

  149. Kresowik TF, Bower TR, Garner SA, et al. Dipyridamole thallium imaging in patients being considered for vascular procedures. Arch Surg 1993; 128:299–302.

    CAS  PubMed  Google Scholar 

  150. Baron JF, Mundler O, Bertrand M, et al. Dipyridamole-thallium scintigraphy and gated radionuclide angiography to assess cardiac risk before abdominal aortic surgery. N Engl J Med 1994; 330:663–669.

    Article  CAS  PubMed  Google Scholar 

  151. Bry JD, Belkin M, O’Donnell TF Jr, et al. An assessment of the positive predictive value and cost-effectiveness of dipyridamole myocardial scintigraphy in patients undergoing vascular surgery. J Vasc Surg 1994; 19:112–121.

    CAS  PubMed  Google Scholar 

  152. Koutelou MG, Asimacopoulos PJ, Mahmarian JJ, Kimball KT, Verani MS. Preoperative risk stratification by adenosine thallium 201 single- photon emission computed tomography in patients undergoing vascular surgery. J Nucl Cardiol 1995; 2:389–394.

    CAS  PubMed  Google Scholar 

  153. Marshall ES, Raichlen JS, Forman S, Heyrich GP, Keen WD, Weitz HH. Adenosine radionuclide perfusion imaging in the preoperative evaluation of patients undergoing peripheral vascular surgery. Am J Cardiol 1995; 76:817–821.

    Article  CAS  PubMed  Google Scholar 

  154. Van Damme H, Pierard L, Gillain D, Benoit T, Rigo P, Limet R. Cardiac risk assessment before vascular surgery: a prospective study comparing clinical evaluation, dobutamine stress echocardiography, and dobutamine Tc-99m sestamibi tomoscintigraphy. Cardiovasc Surg 1997; 5:54–64.

    Article  PubMed  Google Scholar 

  155. Camp AD, Garvin PJ, Hoff J, Marsh J, Byers S, Chaitman BR. Prognostic value of intravenous dipyridamole thallium imaging in patients with diabetes mellitus considered for renal transplantation. Am J Cardiol 1990; 65:1459–1463.

    CAS  PubMed  Google Scholar 

  156. Iqbal A, Gibbons RJ, McGoon MD, Steiroff S, Frohnert P, Velosa JA. Noninvasive assessment of cardiac risk in insulin-dependent diabetic patient being evaluated for pancreatic transplantation using thallium-201 myocardial perfusion scintigraphy. Transpl Proc 1991; 23:1690–1691.

    CAS  Google Scholar 

  157. Coley CM, Field TS, Abraham SA, Boucher CA, Eagle KA. Usefulness of dipyridamole-thallium scanning for preoperative evaluation of cardiac risk for nonvascular surgery. Am J Cardiol 1992; 69:1280–1285.

    CAS  PubMed  Google Scholar 

  158. Shaw L, Miller DD, Kong BA, et al. Determination of perioperative cardiac risk by adenosine thallium-201 myocardial imaging. Am Heart J 1992; 124:861–869.

    CAS  PubMed  Google Scholar 

  159. Takase B, Younis LT, Byers SL, et al. Comparative prognostic value of clinical risk indexes, resting two-dimensional echocardiography, and dipyridamole stress thallium-201 myocardial imaging for perioperative cardiac events in major nonvascular surgery patients. Am Heart J 1993; 126:1099–1106.

    CAS  PubMed  Google Scholar 

  160. Younis L, Stratmann H, Takase B, Byers S, Chaitman BR, Miller DD. Preoperative clinical assessment and dipyridamole thallium-201 scintigraphy for prediction and prevention of cardiac events in patients having major noncardiovascular surgery and known or suspected coronary artery disease. Am J Cardiol 1994; 74:311–317.

    CAS  PubMed  Google Scholar 

  161. Stratmann HG, Younis LT, Wittry MD, Amato M, Miller DD. Dipyridamole technetium-99m sestamibi myocardial tomography in patients evaluated for elective vascular surgery: prognostic value for perioperative and late cardiac events. Am Heart J 1996; 131:923–929.

    CAS  PubMed  Google Scholar 

  162. Klein W. Cardiovascular disease at the turn of the millennium: focus on Europe. Eur Heart J 2001; 3 (Suppl):M2–M6.

    Google Scholar 

  163. Stangl V, Beaumann G, Stangl K. Coronary atherogenic risk factors in women. Eur Heart J 2002; 23:1738–1752.

    Article  CAS  PubMed  Google Scholar 

  164. Mautner SL, Lin F, Mautner GC, Roberts WC. Comparison in women versus men of composition of atherosclerotic plaques in native coronary arteries and saphenous veins used as aorto-coronary conduits. J Am Coll Cardiol 1993; 21:1312–1318.

    CAS  PubMed  Google Scholar 

  165. Devries S, Wolfkiel C, Fusman B, et al. Influence of age and gender on the presence of coronary calcium detected by ultrafast computed tomography. J Am Coll Cardiol 1995; 25:76–82.

    Article  CAS  PubMed  Google Scholar 

  166. Kwok Y, Kim C, Grady D, Segal M, Redberg R. Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol 1999; 83:660–666.

    Article  CAS  PubMed  Google Scholar 

  167. Cerqueira MD. Diagnostic testing strategies for coronary artery disease: specific issues related to gender. Am J Cardiol 1995; 75:52–60D.

    Article  Google Scholar 

  168. Hachamovitch R, Berman DS, Kiat H, et al. Effective risk stratification using exercise myocardial perfusion SPECT in women: gender-related differences in prognostic nuclear testing. J Am Coll Cardiol 1996; 28:34–44.

    Article  CAS  PubMed  Google Scholar 

  169. Marwick TH, Shaw LJ, Laurere MS, et al. The noninvasive prediction of cardiac mortality in man and women with known or suspected coronary artery disease. Am J Med 1999; 106:172–178.

    Article  CAS  PubMed  Google Scholar 

  170. Shaw LJ, Hachamovitch R, Redberg RF. Current evidence on diagnostic testing in women with suspected coronary artery disease: choosing the appropriate test. Cardiol Rev 2000; 8:65–74.

    CAS  PubMed  Google Scholar 

  171. Pancholy SB, Fattah AA, Kamal AM, et al. Independent and incremental prognostic value of exercise thallium single-photon emission computed tomographic imaging in women. J Nucl Cardiol 1995; 2:110–116.

    CAS  PubMed  Google Scholar 

  172. Amanullah AM, Berman DS, Erel J, et al. Incremental prognostic value of adenosine myocardial perfusion SPECT in women with suspected coronary artery disease. Am J Cardiol 1998; 82:725–730.

    Article  CAS  PubMed  Google Scholar 

  173. McIntyre K, Stewart S, Capewell S, et al. Gender and survival: a population based study of 201,114 men and women following first myocardial infarction. J Am Coll Cardiol 2001; 38:729–735.

    Article  PubMed  Google Scholar 

  174. Mobasseri S, Hendel RC. Cardiac imaging in women: use of radionuclide myocardial perfusion imaging and echocardiography for acute chest pain. Cardiol Rev 2002; 10:149–160.

    Google Scholar 

  175. Kwok JM, Miller TD, Hodge DO, Gibbons RJ. Prognostic value of the Duke treadmill score in the elderly. J Am Coll Cardiol 2002; 39:1475–1481.

    Article  PubMed  Google Scholar 

  176. Shaw LJ, Miller D. Noninvasive coronary risk stratification of elderly patients. Am J Geriatr Cardiol 1994; 3:12–21.

    PubMed  Google Scholar 

  177. Steingert RM, Hodnett P, Musso J, Feuerman M. Exercise myocardial perfusion imaging in elderly patients. J Nucl Cardiol 2002; 9:573–580.

    Article  PubMed  Google Scholar 

  178. Kurata C, Uehara A, Sugi T, et al. Exercise myocardial perfusion scintigraphy is useful for evaluating myocardial ischaemia even in the elderly. Ann Nucl Med 2000; 14:181–186.

    CAS  PubMed  Google Scholar 

  179. Hachomovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease. Incremental prognostic value and use in risk stratification. Circulation 1996; 93:905–914.

    CAS  PubMed  Google Scholar 

  180. Timmis AD. Diabetic heart disease: clinical considerations. Heart 2001:85:463–469.

    Google Scholar 

  181. Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on risk stratification using stress single photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 2002; 105:32–40.

    Article  PubMed  Google Scholar 

  182. Schinkel AF, Elhendy A, van Domburg RT, et al. Prognostic value of dobutamine-atropine stress myocardial perfusion imaging in patients with diabetes. Diabetes Care 2002; 25:1637–1643.

    PubMed  Google Scholar 

  183. Inoguchi T, Yamashita T, Umeda F, et al. High incidence of silent myocardial ischaemia in elderly patients with non insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 2000; 47:37–44.

    Article  CAS  PubMed  Google Scholar 

  184. Kang X, Berman DS, Lewin HC, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography in patients with diabetes mellitus. Am Heart J 1999; 138:1025–1032.

    CAS  PubMed  Google Scholar 

  185. Faglia E, Favales F, Calia P, et al. Cardiac events in 735 type 2 diabetic patients who underwent screening for unknown asymptomatic coronary heart disease 5 year follow-up report from the Milan study on Atherosclerosis and Diabetes (MiSAD). Diabetes Care 2002; 25:2032–2036.

    PubMed  Google Scholar 

  186. Wackers FJT, Zaret BL. Detection of myocardial ischemia in patients with diabetes mellitus. Circulation 2002; 105:5–7.

    PubMed  Google Scholar 

  187. Bhopal R, Sengupta-Wiebe S. Cardiovascular risks and outcomes: ethnic variations in hypertensive patients. Heart 2000; 83:495–496.

    Article  CAS  PubMed  Google Scholar 

  188. Khattar RS, Swales JD, Senior R, Lahiri A. Racial variations in cardiovascular morbidity and mortality in essential hypertension. Heart 2000; 83:267–271.

    Article  CAS  PubMed  Google Scholar 

  189. Okelo S, Taylor AL, Wright J, et al. Race and the decision to refer for coronary revascularization. J Am Coll Cardiol 2001; 38:698–704.

    Article  CAS  PubMed  Google Scholar 

  190. Bateman TM, O’Keefe JH Jr, Williams ME. Incremental value of myocardial perfusion scintigraphy in prognosis and outcomes of patients with coronary artery disease. Curr Opin Cardiol 1996; 11:613–620.

    CAS  PubMed  Google Scholar 

  191. Diaz La, Brunken RC, Blackstone EH, Snader CE, Lauer MS. Independent contribution of myocardial perfusion defects to exercise capacity and heart rate recovery for prediction of all-cause mortality in patients with known or suspected coronary heart disease. J Am Coll Cardiol 2001; 37:1558–1564.

    Article  CAS  PubMed  Google Scholar 

  192. Berman DS, Kang X, Schisterman EF, et al. Serial changes on quantitative myocardial perfusion SPECT in patients undergoing revascularization or conservative therapy. J Nucl Cardiol 2001; 8:428–437.

    Article  CAS  PubMed  Google Scholar 

  193. Helber U, Muller-Schauenburg W, Hoffmeister HM. Quantification of viable myocardium in multivessel coronary disease: effects of the redistribution time after reinjection of thallium-201 and comparison with postrevascularization defect size. Int J Angiology 1999; 8:36–39.

    Article  Google Scholar 

  194. Pace L, Perrone-Filardi P, Mainenti PP, et al. Effects of myocardial revascularization on regional thallium-201 uptake and systolic function in regions with reverse redistribution on tomographic thallium-201 imaging at rest in patients with chronic coronary artery disease. J Nucl Cardiol 1998; 5:153–160.

    CAS  PubMed  Google Scholar 

  195. Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacarach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible thallium defects: Are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998; 98:501–508.

    CAS  PubMed  Google Scholar 

  196. Leoncini M, Sciagra R, Maioli M, et al. Usefulness of dobutamine Tc-99m sestamibi-gated SPECT for prediction of LVEF outcome after coronary revascularization for ischemic cardiomyopathy. Am J Cardiol 2002; 89:817–821.

    Article  PubMed  Google Scholar 

  197. Desideri A, Candelpergher G, Zanco P, et al. Exercise technetium 99m sestamibi single-photon emission computed tomography late after coronary artery bypass surgery: long-term follow-up. Clin Cardiol 1997; 20:779–784.

    CAS  PubMed  Google Scholar 

  198. Morse RW, Noe S, Caravalho J Jr, Balingit A, Taylor AJ. Rest-redistribution201Tl SPECT imaging for determination of myocardial viability: relationship among viability, mode of therapy, and long-term prognosis. Chest 1999; 115:1621–1626.

    Article  CAS  PubMed  Google Scholar 

  199. Gonzalez JM, Castll-Conesa J, Candell-Riera J, Rossello-Urgell J. Relevance of99mTc-MIBI rest uptake, ejection fraction and location of contractile abnormality in predicting myocardial recovery after revascularization. Nucl Med Commun 2001; 22:795–805.

    Article  CAS  PubMed  Google Scholar 

  200. Perrone-Filardi P, Chiariello M, Underwood SR. The assessment of myocardial viability and hibernation using resting thallium imaging. Clin Cardiol 2000; 23:719–722.

    CAS  PubMed  Google Scholar 

  201. Oudiz RJ, Smith DE, Pollak AJ, et al. Nitrate-enhanced201Tl SPECT imaging in hibernating myocardium. Am Heart J 1999; 138:369–375.

    CAS  PubMed  Google Scholar 

  202. Gunning MG, Anagnostopoulos C, Davies G, et al. Simultaneous assessment of myocardial viability and function for the detection of hibernating myocardium using ECG-gated99Tc(m)-tetrofosmin emission tomography: a comparison with 201Tl emission tomography combined with cine MR imaging. Nucl Med Commun 1999; 20:209–214.

    CAS  PubMed  Google Scholar 

  203. Pace L, Perrone-Filardi P, Mainenti P, et al. Identification of viable myocardium in patients with chronic coronary artery disease using rest-redistribution201Tl tomography: optimal image analysis. J Nucl Med 1998; 39:1869–1874.

    CAS  PubMed  Google Scholar 

  204. Schafers M, Matheja P, Hasfeld M, et al. The clinical impact of201Tl reinjection for the detection of myocardial hibernation. Eur J Nucl Med 1996; 23:407–413.

    CAS  PubMed  Google Scholar 

  205. Hardoff R, Shafer A, Gips S, et al. Predicting late restenosis after coronary angioplasty by very early (12 to 24 h) thallium-201 scintigraphy: implications with regards to mechanism of late restenosis. J Am Coll Cardiol 1990; 15:1486–1492.

    CAS  PubMed  Google Scholar 

  206. Elhendy A, van Domburg RT, Bax JJ, et al. Dobutamine-atropine stress myocardial perfusion SPECT imaging in the diagnosis of graft stenosis after coronary artery bypass grafting. J Nucl Cardiol 1998; 5:533–537.

    PubMed  Google Scholar 

  207. Lakkis NM, Mahmarian JJ, Verani MS. Exercise thallium-201 single photon emission computed tomography for evaluation of coronary artery bypass graft patency. Am J Cardiol 1996; 78:608.

    Google Scholar 

  208. Shapira I, Heller I, Kornizky Y, Topilsky M, Isakov A. The value of stress thallium-201 single photon emission CT imaging as a predictor of outcome and long-term prognosis after CABG. J Nucl Med 2001; 32:271–282.

    CAS  Google Scholar 

  209. Lauer MS, Lytle B, Pashkow F, et al. Prediction of death and myocardial infarction by screening with exercise thallium testing after coronary artery bypass grafting. Lancet 1998; 351:615–622.

    Article  CAS  PubMed  Google Scholar 

  210. Nallamothu N, Johnson JH, Bagheri B, et al. Utility of stress single photon emission computed tomography (SPECT) perfusion imaging in predicting outcome after coronary artery bypass grafting. Am J Cardiol 1997; 80:1515–1521.

    Article  Google Scholar 

  211. Sarda L, Fuchs L, Lebtahi R, et al. Prognostic value of201T1 myocardial scintigraphy after coronary artery bypass grafting. Nucl Med Commun 2001; 22:189–196.

    Article  CAS  PubMed  Google Scholar 

  212. Kaminek M, Myslivecek M, Skvarilova M, Husak V, Koranda P, Lang O. Prognostic value of myocardial perfusion tomographic imaging in patients after percutaneous transluminal coronary angioplasty. Clin Nucl Med 2000; 25:775–778.

    Article  CAS  PubMed  Google Scholar 

  213. Alazraki NP, Krawczynska EG, Kosinski AS, et al. Prognostic value of thallium-201 single-photon emission computed tomography for patients with multivessel coronary artery disease after revascularisation (the Emory Angioplasty versus Surgery Trial [EAST]). Am J Cardiol 1999; 84:1369–1374.

    Article  CAS  PubMed  Google Scholar 

  214. Palmas W, Bingham S, Diamond GA, et al. Incremental prognostic value of exercise thallium-201 myocardial single photon emission tomography late after coronary artery bypass surgery. J Am Coll Cardiol 1995; 26:1560–1562.

    Article  PubMed  Google Scholar 

  215. Nallamothu N, Johnson JH, Bagheri B, Heo J, Iskandrian AE. Utility of stress single-photon emission computed tomography (SPECT) perfusion imaging in predicting outcome after coronary artery bypass grafting. Am J Cardiol 1997; 80:1517–1521.

    Article  CAS  PubMed  Google Scholar 

  216. Zellweger MJ, Lewin HC, Lai S, et al. When to stress patients after coronary artery bypass surgery? Risk stratification in patients early and late post-CABG using stress myocardial perfusion SPECT: implications of appropriate clinical strategies. J Am Coll Cardiol 2001; 37:144–152.

    Article  CAS  PubMed  Google Scholar 

  217. Schinkel AFL, Elhendy A, van Domburg RT, et al. Long-term prognostic value of dobutamine stress99mTc-sestamibi SPECT: single-centre experience with 8-year follow-up. Radiology 2002; 225:701–706.

    PubMed  Google Scholar 

  218. Manyari DE, Knudtson M, Kloiber R, Roth D. Sequential thallium-201 myocardial perfusion studies after successful percutaneous transluminal coronary artery angioplasty: delayed resolution of exercise-induced scintigraphic abnormalities. Circulation 1988; 77:86–95.

    CAS  PubMed  Google Scholar 

  219. Hecht HS, Shaw RE, Chin HL, Ryan C, Stertzer SH, Myler RK. Silent ischaemia after coronary angioplasty: evaluation of restenosis and extent of ischaemia in asymptomatic patients by tomographic thallium-201 exercise imaging and comparison with symptomatic patients. J Am Coll Cardiol 1991; 17:670–677.

    CAS  PubMed  Google Scholar 

  220. Department of Health. National Service Framework for Coronary Heart Disease. Leeds: Department of Health 2000. Available from http.//ww.doh.gov.uk/nsf/coronary.htm.

  221. British Cardiac Society Guidelines and Medical Practice Committee and Royal College of Physicians Clinical Effectiveness and Evaluation Unit. Guidelines for the management of patients with acute coronary syndromes without persistent ECG ST segment elevation. Heart 2001; 85:133–142.

    Article  PubMed  Google Scholar 

  222. Farkouh ME, Smars P, Reeder G.S, et al. A clinical trial of a chest pain observation unit for patients with unstable angina. N Eng J Med 1998; 339:1882–1888.

    Article  CAS  Google Scholar 

  223. Goodacre SW. Should we establish chest pain observation units in the UK? A systematic review and critical appraisal of the literature. J Accid Emerg Med 2000; 17:1–6(S).

    CAS  PubMed  Google Scholar 

  224. Stratmann HG, Younis LT, Wittry MD, et al. Exercise technetium-99m myocardial tomography for the risk stratification of men with medically treated unstable angina pectoris. Am J Cardiol 1995; 76:235–240.

    Article  Google Scholar 

  225. Stratman HG, Tamesis BR, Younis LT, et al. Prognostic value of predischarge dipyridamole technetium sestamini myocardial tomography in medically treated patient with unstable angina. Am Heart J 1995; 130:734–740.

    CAS  PubMed  Google Scholar 

  226. Bilodeau L, Theroux P, Gregoire J, et al. Technetium-99m sestamibi tomography in patients with spontaneous chest pain: correlations with clinical electrocardiographic and angiographic findings. J Am Coll Cardiol 1991; 18:1684–1691.

    Google Scholar 

  227. Christian TF, Clements IP, Gibbons RJ, et al. Non-invasive identification of myocardium at risk in patients with acute myocardial infarction and non diagnostic electrocardiograms with technetium-99m sestamibi. Circulation 1991; 83:1615–1620.

    CAS  PubMed  Google Scholar 

  228. Hilton TC, Thompson RC, Williams H, et al. Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol 1994; 23:1016–1022.

    Google Scholar 

  229. Varetio T, Cantalupi D, Altieri A, et al. Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischaemic events in patients with non diagnostic elctrocardiography. J Am Coll Cardiol 1993; 22:1804–1808.

    Google Scholar 

  230. Tatum JL, Jesse RI, Kontos MC, et al. Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 1997; 29:116–125.

    CAS  PubMed  Google Scholar 

  231. Ziffer JA, Nateman DR, Janowitz WR, et al. Improved patient outcomes: cost effectiveness of utilizing nuclear cardiology protocols in an emergency department chest pain centre [abstract]. J Nucl Med 1998:39:13p.

  232. Heller GV, Stowers SA, Hendel RC, et al. Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and non diagnostic electrocardiogram. J Am Coll Cardiol 1998; 31:1011–1017.

    Google Scholar 

  233. Kontos MC, Jesse RL, Anderson FP, et al. Comparison of myocardial perfusion imaging and cardiac troponin I in patients admitted to the emergency department with chest pain. Circulation 1999; 99:2073–2078.

    CAS  PubMed  Google Scholar 

  234. Stowers SA, Eisenstein EL, Wackers T, et al. An economic analysis of an aggressive diagnostic strategy with single photon emission computed tomography myocardial perfusion imaging and early exercise stress testing in emergency department patients who present with chest pain but nondiagnostic electrocardiograms: results from a randomized trial. Ann Emerg Med 2000; 35:17–25.

    CAS  PubMed  Google Scholar 

  235. Udelson JE. The Emergency Room Assessment of Sestamibi for the Evaluation of Chest Pain Trial. Proceedings of the 72nd meeting of the American Heart Association. Atlanta, USA, November 1999.

  236. Joint Royal College of Physicians/British Cardiac Society Fifth Joint Report on the Provision of Cardiac Services. Heart 2002; 88:supplement in press.

    Google Scholar 

  237. Braunwald EB, et al. Unstable angina clinical practice guideline number 10. Agency for Health Care Policy and Research publication No.94-0602, 1994.

  238. Brown KA. Management of unstable angina: the role on noninvasive risk stratification. J Nucl Cardiol 1997; 4:S164–S168.

    CAS  PubMed  Google Scholar 

  239. Fox KAA, Poole-Wilson PA, Henderson RA, et al. Interventional versus conservative treatment for patients with unstable angina or non ST elevation myocardial infarction: The British Heart Foundation RITA 3 Randomised Trial. Lancet 2002; 360:743–751.

    Article  CAS  PubMed  Google Scholar 

  240. Mehta S, Yousuf S, Hunt D, et al. Invasive versus conservative management of unstable angina and non Q-wave myocardial infarction: a meta-analysis. Circulation 1999; 100:I-775.

    Google Scholar 

  241. Solomon DH, Stone PH, Glynn RJ, et al. Use of risk stratification to identify patients with unstable angina likeliest to benefit from an invasive versus conservative management strategy. J Am Coll Cardiol 2001; 38:969–976.

    Article  CAS  PubMed  Google Scholar 

  242. Cannon CP, Weintaub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med 2001; 344:1879–1887.

    Article  CAS  PubMed  Google Scholar 

  243. van der Werf F, Ardissino D, Betriu A, et al. Management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2003; 24:28–66.

    Article  PubMed  Google Scholar 

  244. Ryan TJ, Antman EM, Brookes NH, et al. ACC/AHA Guidelines for the management of patients with acute myocardial infarction: executive summary and recommendations. Circulation 1999; 100:1016–1029.

    CAS  PubMed  Google Scholar 

  245. Brown KA, Heller GV, Landin RS, et al. Early dipyridamole Tc-99m sestamibi single photon emission computed tomographic imaging 2 to 4 days after acute myocardial infarction predicts in-hospital and post-discharge cardiac events: comparison with submaximal exercise imaging. Circulation 1999; 100:2060–2066.

    CAS  PubMed  Google Scholar 

  246. Mahmarian JJ, Mahmarian AC, Marks GF, Pratt CM, Verani MS. Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 1995; 25:1333–1340.

    Google Scholar 

  247. Dakik HA, Mahmarian JJ, Kimball KT, et al. Prognostic value of exercise201Tl tomography in patients treated with thrombolytic therapy during acute myocardial infarction. Circulation 1996; 94:2735–2742.

    CAS  PubMed  Google Scholar 

  248. Travin MI, Dessouki A, Cameron T, Heller GV. Use of exercise technetium-99m sestamibi SPECT imaging to detect residual ischaemia and for risk stratification after acute myocardial infarction. Am J Cardiol 1995; 75:665–669.

    Article  CAS  PubMed  Google Scholar 

  249. Basu S, Senior R, Raval U, Lahiri A. Superiority of nitrate-enhanced201TI over conventional redistribution 201TI imaging for prognostic evaluation after myocardial infarction and thrombolysis. Circulation 1997; 96:2932–2937.

    CAS  PubMed  Google Scholar 

  250. Ellis SG, Mooney MR, George BS, et al. Randomised trial of late elective angioplasty versus conservative management for patients with residual stenosos after thrombolytic treatment for myocardial infarction (TOPS Trial). Circulation 1992; 86:1400–1406.

    CAS  PubMed  Google Scholar 

  251. Shaw LJ, Eisenstein EL, Hachamovitch R, Kesler KL, Heller GV, Miller DD. A primer of biostatistic and economic methods for diagnostic and prognostic modeling in nuclear cardiology: Part II. J Nucl Cardiol 1997; 4:52–60.

    CAS  PubMed  Google Scholar 

  252. Underwood SR, Godman B, Salyani S, Ogle JR, Ell PJ. Economics of myocardial perfusion imaging in Europe—The EMPIRE study. Eur Heart J 1999; 20:157–166.

    Article  CAS  PubMed  Google Scholar 

  253. Mark DB, Shaw LJ, Lauer MS, O’Malley PG, Heidenreich P. 34th Bethesda Conference: Task force #5—Is atherosclerosis imaging cost effective? J Am Coll Cardiol 2003; 41:1906–1917.

    Article  PubMed  Google Scholar 

  254. Maddahi J, Ghambir SS. Cost-effective selection of patients for coronary angiography. J Nucl Cardiol 1997; 4:S141–S151.

    CAS  PubMed  Google Scholar 

  255. Shaw LJ, Hachamovitch R, Eisenstein E, et al. Cost implications for implementing a selective preoperative risk screening approach for peripheral vascular surgery patients. Am J Managed Care 1997; 3:1817–1827.

    CAS  Google Scholar 

  256. Garber AM, Solomon NA. Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Ann Intern Med 1999; 130:719–728.

    Google Scholar 

  257. Goldman L, Garber AM, Grover SA, Hlatky MA. 27th Bethesda Conference: matching the intensity of risk factor management with the hazard for CAD events. Task Force 6: Cost effectiveness of assessment and management of risk factors. J Am Coll Cardiol 1996; 27:1020–1030.

    Article  CAS  PubMed  Google Scholar 

  258. Patterson RE, Eng C, Horowitz SF, Gorlin R, Goldstein SR. Bayesian comparison of cost-effectiveness of different clinical approaches to coronary artery disease. J Am Coll Cardiol 1984; 4:278–289.

    CAS  PubMed  Google Scholar 

  259. Kuntz KM. Cost-effectiveness of diagnostic strategies for patients with chest pain. Ann Intern Med 1999; 130:709–718.

    CAS  PubMed  Google Scholar 

  260. Wong JB, Sonnenberg FA, Salem DN, Pauker SG. Myocardial revascularization for chronic stable angina. Analysis of the role of percutaneous transluminal coronary angioplasty based on data available in 1989. Ann Intern Med 1990; 113:852–871.

    Google Scholar 

  261. Goldman L, Weinstein MC, Goldman PA, Williams LW. Cost-effectiveness of HMG-CoA reductase inhibition for primary and secondary prevention of coronary heart disease. JAMA 1991; 265:1145–1151.

    Article  CAS  PubMed  Google Scholar 

  262. Shaw LJ, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. J Am Coll Cardiol 1999; 33:661–669.

    Article  CAS  PubMed  Google Scholar 

  263. Shaw LJ, Marwick TH, Sawada S, et al. Prognostic value of exercise echocardiography versus SPECT imaging in 9521 intermediate pretest risk patients [abstract]. Circulation 2002; 106 (Suppl II):II-610.

    Google Scholar 

  264. Lee DS, Jang MJ, Cheon GJ, Chung JK, Lee MC. Comparison of the cost-effectiveness of stress myocardial perfusion SPECT and stress echocardiography in suspected coronary artery disease considering the prognostic value of false-negative results. J Nucl Cardiol 2002; 9:515–522.

    Article  PubMed  Google Scholar 

  265. Bateman TM. Nuclear cardiology in private practice. J Nucl Cardiol 1997; 4:S184–S188.

    CAS  PubMed  Google Scholar 

  266. Wong Y, Rodwell A, Dawkins S, Livesey SA, Simpson IA. Sex differences in investigation results and treatment in subjects referred for investigation of chest pain. Heart 2001; 85:149–152.

    Article  CAS  PubMed  Google Scholar 

  267. Underwood SR. Cost-effective investigation of chest pain (electronic correspondence). Heart 2001 http://heart.bmjjournals.com/cgi/eletters/85/2/149.

  268. Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. J Am Coll Cardiol 1999; 33:1756–1824.

    Article  CAS  PubMed  Google Scholar 

  269. Shaw LJ, Hachamovitch R, Papatheofanis FJ. Outcomes and technology assessment in nuclear medicine. Reston, VA: Society of Nuclear Medicine Press, 1999.

  270. Gibbons RJ, Balady GJ, Brocker JT, et al. ACC/AHA 2002 guideline update for exercise testing: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing) 2002. Available at www.acc.org/clinical/guidelines/exercise/dirIndex.htm.

  271. Klocke FJ, Baird MG, Bateman TM, et al. ACC/AHA/ASNC guidelines for clinical use of cardiac radionuclide imaging. J Am Coll Cardiol 2003; 42:1318–1333.

    Article  PubMed  Google Scholar 

  272. Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina. J Am Coll Cardiol 2003; 41:159–168.

    Article  PubMed  Google Scholar 

  273. Mieres JH, Shaw LJ, Hendel RC, et al. Consensus statement. American Society of Nuclear Cardiology: Task Force on Women and Coronary Artery Disease. The role of myocardial perfusion imaging in the clinical evaluation of coronary artery disease in women. Available at http://www.asnc.org/.

  274. De Puey G, Garcia EV. Updated imaging guidelines for nuclear cardiology procedures: Part 1. J Nucl Cardiol 2001:8:G1–G58.

    Google Scholar 

  275. Bertrand ME, Simoons ML, Fox KAA, et al. Management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. The Task Force on the Management of Acute Coronary Syndromes of the European Society of Cardiology. Eur Heart J 2002; 23:1809–1840.

    Article  PubMed  Google Scholar 

  276. de Bono D, for the joint working party of the British Cardiac Society and Royal College of Physicians of London. Investigation and management of stable angina: revised guidelines 1998. Heart 1999; 81:546–555.

    PubMed  Google Scholar 

  277. Anagnostopoulos C, Harbinson M, Kelion A, et al. BNMS procedure guidelines for myocardial perfusion imaging (draft). Heart 2003; 89:1156 (also available at www.bncs.org.uk.

    Article  PubMed  Google Scholar 

  278. Guideline for the management of patients with acute coronary syndromes without persistent ECG ST segment elevation. British Cardiac Society Guideline and Medical Practice Committee, and Royal College of Physicians Clinical Effectiveness and Evaluation Unit. Heart 2001; 85:133–142.

    Article  PubMed  Google Scholar 

  279. Underwood R, Gibson C, Tweddel A, Flint J. A survey of nuclear cardiological practice in Great Britain. The British Nuclear Cardiology Group. Br Heart J 1992; 67:273–277.

    CAS  PubMed  Google Scholar 

  280. Pennell DJ, Prvulovich E, Tweddel A, Caplin J. Nuclear Cardiology in the UK: British Nuclear Cardiology Society Survey 1994. Nucl Med Commun 1998; 19:305–313.

    CAS  PubMed  Google Scholar 

  281. Prvulovich E, Metcalfe MJ. Nuclear cardiology in the UK: activity and practice 1997. Eur J Nucl Med Mol Imaging 2002; 29:553–558.

    Article  CAS  PubMed  Google Scholar 

  282. Prvulovich EM, Jarritt PH, Vivian GC, Clarke SE, Pennell DJ, Underwood SR. Quality assurance in myocardial perfusion tomography: a collaborative BNCS/BNMS audit programme. Nucl Med Commun 1998; 19:831–838.

    CAS  PubMed  Google Scholar 

  283. Jarritt PH, Prvulovich EM, Underwood SR, Yang GZ. Myocardial perfusion scintigraphy: an interactive CDROM training programme of reporting skills. British Nuclear Cardiology Society and British Nuclear Medicine Society, 2000; London, UK. Available from http://www.bnms.org.

  284. British Cardiac Society. Council statement on the demand and need for cardiac services and the development of a waiting list strategy for cardiac disease. British Cardiac Society, July 1994. http://www.bcs.com/doclibrary/bcsmembers/pub2.html.

  285. A report of a working group of the British Cardiac Society. Cardiology in the district general hospital. Br Heart J 1994; 72:303–308.

    PubMed  Google Scholar 

  286. Martin RM, Hemingway H, Gunnell D, Karsch KR, Baumbach A, Frankel S. Population need for coronary revascularisation: are national targets for England credible? Heart 2002; 88:627–633.

    Article  CAS  PubMed  Google Scholar 

  287. British Cardiovascular Intervention Society. BCIS audit returns 2001. Available at http://www.bcis.org.uk/audit/index.html.

  288. Arlington Medical Resources. The Imaging Marketing Guide. Arlington VA and Brussels: AMR Inc.

  289. Forbes E, Clarke SEM, Buxton-Thomas M, Burwood R, Nunan T, Craig J. The development of regional nuclear medicine audit in South Thames. Nucl Med Commun 1997; 18:693–697.

    CAS  PubMed  Google Scholar 

  290. Giering LP, Smith JE. Industrial perspective: from IND to NDA. J Nucl Cardiol 1995; 2:66–70.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The following people either took part in the consensus conference or commented on the manuscript: Dr. Andries van Aswegen, Dr. John Barker, Dr. Jamshed Bomanji, Dr. John Buscombe, Professor Martin Buxton, Professor Paolo Camici, Professor John Camm, Professor John Cleland, Dr. Norman Campbell, Dr. Neil Garvie, Dr. Paul Hinton, Professor Peter Jarritt, Dr. Avijit Lahiri, Dr. Jim McKillop, Professor Michael Maisey, Dr. William Martin, Dr. Vahini Naidoo, Dr. Tom Nunan, Ms Vicki Parkin, Professor Dudley Pennell, Dr. Mary Prescott, Dr. Philip Thomas, Dr. Wendy Tindale and Dr. Gill Vivian. We thank the American Society of Nuclear Cardiology for its assistance, Ann Moulson of Serac Communications for assistance with writing and Sonia Crossley for administrative assistance. We also thank Amersham Health, Bristol Myers Squibb, GE Medical Systems and Philips Medical Systems for financial support for the meeting but they took no part in planning, drafting, writing or approving this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Underwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underwood, S.R., Anagnostopoulos, C., Cerqueira, M. et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 31, 261–291 (2004). https://doi.org/10.1007/s00259-003-1344-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1344-5

Keywords

Navigation