Skip to main content
Log in

Oxidative stress in the human heart is associated with changes in the antioxidative defense as shown after heart transplantation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The study was designed to demonstrate - for the first time in humans - that oxidative stress in the heart indicated by lipid peroxidation is associated with time--dependent changes in the enzymatic antioxidative defense. For this purpose, we analyzed the oxygen radical metabolism in 69 myocardial biopsies (taken between the fifth day and 6 years after transplantation) of 31 heart transplant recipients who were suspected of suffering from increased formation of oxygen radicals in the allograft.

The levels of lipid peroxides (LPO), glutathione peroxidase (GSH-Px), total-, copper/zinc- and manganese superoxide dismutase (t-SOD, CuZnSOD, MnSOD) were compared in 3 post-transplantation periods (5-90 d vs. 91-365 d vs. 1 y). Significantly increased LPO levels were found (0.27±0.04 vs. 0.13±0.02 vs. 0.27±0.04 nmol/mg protein) in the first and third period. Increased activities of GSH-Px (39.8±3.8 vs. 30.2±4.1 vs. 76.±6.5 mU/mg protein), t-SOD (1.57±0.10 vs. 1.30±0.14 vs. 2.44±0.23 U/mg protein) and CuZnSOD (1.09±0.08 vs. 0.93±0.13 vs. 2.05±0.21 U/mg protein) occurred only in the third period.

For calculation of time courses more precisely, the single data with respect to time were analyzed with a curve fitting program. Except for the first period, the allograft LPO and GSH-Px levels rose for up to 6 years after transplantation. However, the t-SOD and CuZnSOD activities switched from increase to decrease in the third period.

The study provided indication for: first, the potency of the human heart to time-limited increase of the enzymatic antioxidative defense, and secondly, the inability of human heart allografts - despite this adaptation - for complete prevention of myocardial oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coetzee IH, Lochner A: Free radical effects on myocardial membrane microviscosity. Cardioscience 4: 205-215, 1993

    Google Scholar 

  2. Kaneko M, Matsumoto Y, Hayashi H, Kobayashi A, Yamazaki N: Oxygen free radicals and calcium homeostasis in the heart. Mol Cell Biochem 139: 91-100, 1994

    Google Scholar 

  3. Schimke I, Haberland A, Will-Shahab L, Küttner I, Papies B: In vitro effects of reactive O2 species on the myocardial β-receptoradenylyl cyclase-system. Mol Cell Biochem 110: 41-46, 1992

    Google Scholar 

  4. Singal PK, Kirshenbaum LA: A relative deficit in antioxidant reserve may contribute in cardiac failure. Can J Cardiol 6: 47-49, 1990

    Google Scholar 

  5. Billigham ME, Berry GJ: The pathology of cardiac transplantation. In: S.J. Shumway, and N.E. Shumway (eds). Thoracic Transplantation. Blackwell Science, Cambridge, 1995, pp 309-347

    Google Scholar 

  6. Belch JJ, Bridges AB, Scott N, Chopra M: Oxygen free radicals and congestive heart failure. Br Heart J 65: 245-248, 1991

    Google Scholar 

  7. Schimke I, Haberland A: Sauerstoff-Radikale und Herz-Kreislauf-Krankheiten: Pathogenetische Mechanismen, therapeutische Möglichkeiten. Z Kardiol 82: 601-609, 1993

    Google Scholar 

  8. Dhalla AK, Singal PK: Antioxidant changes in hypertrophied and failing guinea pig heart. Am J Physiol 266: H1280-1285, 1994

    Google Scholar 

  9. Witztum JL: The oxidation hypothesis of atherosclerosis. Lancet 344: 793-7935, 1994

    Google Scholar 

  10. Ghatak A, Brar MJ, Agarwal A, Goel N, Rastogi AK, Vaish AK, Sircar AR, Chandra M: Oxy free radical system in heart failure and therapeutic role of oral vitamin E. Int J Cardiol 57: 119-127, 1996

    Google Scholar 

  11. Boyle EM, Shumway SJ, Bolman III RM: Immunosuppression regimens in thoracic transplantation. In: S.J. Shumway and N.E. Shumway (eds). Thoracic Transplantation. Blackwell Science, Cambridge, 1995, pp 195-204

    Google Scholar 

  12. Ohkawa H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95: 351-358, 1978

    Google Scholar 

  13. Beauchamp C, Fridovich I: Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. J Anal Biochem 44: 276-287, 1971

    Google Scholar 

  14. Mizuno Y: Changes in superoxide dismutase, catalase, glutathion peroxidase, and glutathione reductase activities and thiobarbituric acid-reactive products levels in early stages of development in dystrophic chickens. Exp Neurol 84: 58-73, 1984

    Google Scholar 

  15. Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 29: 143-148, 1967

    Google Scholar 

  16. Billingham ME, Cary NRB, Hammond ME, Kemnitz J, Marboe CH, McCallister HA, Snovar DC, Winters GL, Zerbe A: A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart rejection study group. J Heart Transplant 9: 587-593, 1990

    Google Scholar 

  17. Hosenpud JD, Novick RJ, Breen TJ, Keck BM, Daily DP: The Registry of the International Society for Heart and Lung Transplantation. Twelfth Official Report–1995. J Heart & Lung Transplant 15: 655-674, 1996

    Google Scholar 

  18. Edes I, Piros G, Forster T, Csanady M: Alcohol-induced congestive cardiomyopathy in adult turkeys: effects on myocardial antioxidant defence systems. Basic Res Cardiol 82: 551-556, 1987

    Google Scholar 

  19. Zheng YM: The relationship between experimental myocardial hypertrophy and oxygen free radicals. Ching Hua Hsin Hsueh Kuan Ping Tsa Chinh 21: 379-382, 1993

    Google Scholar 

  20. Gupka M, Sigal PK: Higher antioxidative capacity during a chronic stable heart hypertrophy. Circ Res 64: 398-406, 1989

    Google Scholar 

  21. Coles JG, Romaschin AD, Wilson GJ, Mickle DA, Dasmahapatra H, Martell M, Mehra A, Tsao P: Oxygen free radical-mediated lipid peroxidation injury in acute cardiac allograft rejection. Transplantation 54: 175-178, 1992

    Google Scholar 

  22. Kloc M, Mailer K, Stepowski S: Superoxide dismutase decrease in cardiac transplants. Transplantation 41: 794-796, 1986

    Google Scholar 

  23. Roza AM, Pieper G, Moore-Hilton G, Johnson CP, Adams MB: Free radicals in pancreatic and cardiac allograft rejection. Transpl Proc 26: 544-555, 1994

    Google Scholar 

  24. Sobotka PA, Gupka DK, Lansky DM, Costano MR, Zarling EJ: Breath pentane is a marker of acute cardiac allograft rejection. J Heart & Lung Transplant 13: 224-229, 1994

    Google Scholar 

  25. Auer T, Khoschsorur GA, Rabl H, Iberer F, Petutschnigg B, Wasler A, Tscheliessnigg KH: Detection of lipid peroxidation products by malondialdehyde (MDA-TBA reaction) in organ transplantation. Transplant Proc 27: 2749-2751, 1995

    Google Scholar 

  26. Chancerelle Y, de Lorgeril M, Viret R, Chiron B, Dureau G, Renaud S, Kergonou JF: Increased lipid peroxidation in cyclosporin-treated heart transplant recipients. Am J Cardiol 68: 813-816 1991

    Google Scholar 

  27. de Lorgeril M, Richard MJ, Arnaud J, Boissonat P, Guidollet J, Dureau G, Renaud S, Favier A: Lipid peroxides and antioxidant defenses in accelerated transplantation-associated coronary arteriosclerosis. Am Heart J 125: 974-980, 1993

    Google Scholar 

  28. Janero DR: Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9: 515-540, 1990

    Google Scholar 

  29. Bondo K, Senoo Y: Oxygen-derived free radical damage in canine heart transplantation. J Surg Res 46: 152-156, 1989

    Google Scholar 

  30. Vreugdenhil PK, Belzer FO, Southard JH: Effect of cold storage on tissue and cellular glutathione. Cryobiology 28: 143-149, 1991

    Google Scholar 

  31. Janssen M, Kostner JF, Bos E, de Jong JM: Malondialdehyde and glutathione production in isolated perfused human and rat hearts. Circ Res 73: 681-688, 1993

    Google Scholar 

  32. Lehmann I, Papies B, Parsi RA, Romaniuk P, Schimke I, Parsi E, Koenig ML, Wagenknecht C: Enzyme pattern and lipid peroxides in endomyocardial biopsies from patients with cardiomyopathy and myocarditis. Clin Chim Acta 173: 193-200, 1988

    Google Scholar 

  33. Nowak D, Zieba M, Zawiasa D, Rozniecki J, Krol M: Changes of serum concentration of lipid peroxidation products in patients with pneumonia. Monardi Arch Chest Dis 51: 188-93, 1996

    Google Scholar 

  34. Schwarz KB: Oxidative stress during viral infection: a review. Free Radic Biol Med 21: 641-649, 1996

    Google Scholar 

  35. Kanter KR, Hertzler GL, Gravanis MB: Cardiac transplantation. In: M.B. Gravanis (ed). Cardiovascular Disorders. Pathogenesis and Pathophysiology. Mosby, St Louis, 1993, pp 463-488

    Google Scholar 

  36. Miyazawa T, Suzuki T, Fujimoto K, Kinoshita M: Age-related changes of phosphatidylcholine hydroperoxide and phosphatidyletanolamine hydroperoxide levels in normal human red blood cells. Mech Ageing Dev 86: 145-150, 1996

    Google Scholar 

  37. Schimke I, Romaniuk P, Schimke E, Papies B: Konzentration von Thiobarbitursäure-reaktiver Substanzen im Plasma von Patienten mit Atherosklerose unterschiedlicher Lokalisation und unterschiedlichen Schweregrades. Z Med Lab Diagn 31: 176-180, 1990

    Google Scholar 

  38. Kumar KV, Das UN. Are free radicals involved in the pathology of human essential hypertension. Free Radic Res Commun 19: 59-66, 1993

    Google Scholar 

  39. Schimke I, Schimke E: Plasma concentration of thiobarbituric acid reactive substances (TBARS) in type I diabetics. Diabetes Research 21: 65-72, 1992

    Google Scholar 

  40. Niwa Y, Ilizawa O, Ishimoto K, Akamatsu H, Kanoh T: Agedependent basal level and induction capacity of copper-zinc and manganese superoxide dismutase and other scavenging enzyme activities in leukocytes from young and elderly adults. Am J Pathol 143: 312-320, 1993

    Google Scholar 

  41. Sohal RS, Agarwal S, Sohal BH: Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mech Ageing Dev 81: 15-25, 1995

    Google Scholar 

  42. Haberland A, Henke W, Grune T, Siems W, Jung K, Schimke I: Different response of the oxygen radical metabolism in rat heart, liver and kidney on cyclosporine A treatment. Inflamm Res 46: 452-454, 1997

    Google Scholar 

  43. le Gal YM, Scott T, Prabhakaran VM, Zhang J, Pushpanathan C, Morrissey L: Heart-lung protection from ischemic injury during 8 hour hypothermic preservation. Acta Biomed Ateneo Parmense 65: 181-198, 1994

    Google Scholar 

  44. Lapenna D, Mezzetti A, de Gioia S, Pierdomenico SD, Verna AM, Daniele F, Marzio L, di Ilio C, Clafiore AM, Cuccurullo F: Blood cardioplegia reduces oxidant burden in the ischemic and reperfused human myocardium. Ann Thorac Surg 57: 1522-1525, 1994

    Google Scholar 

  45. Slakey DP, Roza AM, Pieper GM, Johnson CP, Adams MB: Delayed cardiac allograft rejection due to combined cyclosporine and antioxidant therapy. Transplantation 56: 1305-1309, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schimke, I., Schikora, M., Meyer, R. et al. Oxidative stress in the human heart is associated with changes in the antioxidative defense as shown after heart transplantation. Mol Cell Biochem 204, 89–96 (2000). https://doi.org/10.1023/A:1007030322514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007030322514

Navigation