Skip to main content
Log in

The Insulin-Like Growth Factors (IGFs) and IGF Binding Proteins in Postnatal Development of Murine Mammary Glands

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The insulin-like growth factors are mitogens and survival factors for normal mammary epithelialcells in vitro. Data reviewed here demonstrate that mRNAs for IGF-I and IGF-II, the IGFtype I receptor and the IGFBPs are expressed locally in mammary tissue during pubertal andpregnancy-induced growth and differentiation of murine mammary glands. IGF-I, IGF-II andthe IGF-IR were expressed in terminal end buds (TEBs) in virgin glands during ductal growth.In addition, IGF-II and IGF-IR mRNAs were expressed in ductal and alveolar epithelium inglands throughout postnatal development. Consistent with these results, IGF-I promoted ductalgrowth and proliferation in mouse mammary glands in organ culture. In addition to endogenousexpression of the IGFs and IGF-IR, the IGFBPs showed a varied pattern of expression inmammary tissue during postnatal development. For example, IGFBP-3 and -5 mRNAs wereexpressed in TEBs and ducts while IGFBP-2 and -4 mRNAs were expressed in stromal cellsimmediately surrounding the epithelium. These results support a role for the IGFs and IGFBPsas local mediators of postnatal mammary gland growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Fendrick, A. Raafat, and S. Haslam (1998). Mammary gland growth and development from the postnatal period to post-menopause: Ovarian steroid receptor ontogeny and regulation in the mouse. J. Mam. Gland Biol. Neoplasia 3:7–22.

    Google Scholar 

  2. W. Bocchinfuso and K. Korach (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2:323–334.

    Google Scholar 

  3. R. Humphreys, J. Lydon, B. O'Malley, and J. Rosen (1997). Use of PRKO mice to study the role of progesterone in mammary gland development. J. Mam. Gland Biol. Neoplasia 2: 343–354.

    Google Scholar 

  4. C. Ormandy, N. Binart, and P. Kelly (1997). Mammary gland development in prolactin receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2:355–364.

    Google Scholar 

  5. G. Cunha, P. Young, Y. Hom, P. Cooke, J. Taylor, and D. Lubahn (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J. Mam Gland Biol. Neoplasia 2:393–402.

    Google Scholar 

  6. D. Kleinberg (1997). Early mammary development: Growth hormone and IGF-1. J. Mam. Gland Biol. Neoplasia 2:49–57.

    Google Scholar 

  7. D. Kleinberg (1998). Role of IGF-I in normal mammary development. Breast Cancer Res. Treat. 47:201–208.

    Google Scholar 

  8. N. Luetteke, H. Phillips, T. Qiu, N. Copeland, H. Earp, N. Jenkins, and D. Lee (1994). The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 8:263–278.

    Google Scholar 

  9. K. Fowler, F. Walker, W. Alexander, M. Hibbs, E. Nice, R. Bohmer, G. Mann, C. Thumwood, R. Maglitto, J. Danks, R. Chetty, A. Burgess, and A. Dunn (1995). A mutation in the epidermal growth factor receptor in waved-2 mice has a prof found effect on receptor biochemistry that results in impaired lactation. Proc. Natl. Acad. Sci. U.S.A. 92:1465–1469.

    Google Scholar 

  10. D. Jackson, J. Bresnick, I. Rosewell, T. Crafton, R. Poulson, G. Stamp, and C. Dickson (1997). Fibroblast growth factor signaling has a role in lobuloalveolar development of the mam mary gland. J. Cell Sci. 110:1261–1268.

    Google Scholar 

  11. W. Xie, A. Paterson, E. Chin, L. Nabell, and J. Kudlow (1997). Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhib its pubertal mammary duct development. Mol. Endocrinol. 11:1766–1781.

    Google Scholar 

  12. J. Wiesen, P. Young, Z. Werb, and G. Cunha (1999). Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126: 335–344.

    Google Scholar 

  13. A. Gorska, H. Joseph, R. Derynck, H. Moses, and R. Serra (1998). Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epilium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ. 9:229–238.

    Google Scholar 

  14. H. Joseph, A. Gorska, P. Sohn, H. Moses, and R. Serra (1999). Overexpression of a kinase-deficient transforming growth facthe tor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell. 10:1221–1234.

    Google Scholar 

  15. J. Baker, J.-P. Lie, E. J. Robertson, and A. Efstratiadis (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82.

    Google Scholar 

  16. J.-P. Liu, J. Baker, A. S. Perkins, E. J. Robertson, and A. Efstratiadis (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I(Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72.

    Google Scholar 

  17. J. Jones and D. Clemmons (1995). Insulin-like growth factors and their binding proteins: Biological Actions. Endocrine Rev. 16:3–34.

    Google Scholar 

  18. M. van Kleffens, C. Groffen, D. Lindenbergh-Kortleve, J. van Neck, S. Gonzalez-Parra, N. Dits, E. Zwarthoff, and S. Drop (1998). The IGF system during fetal-placental development of the mouse. Mol. Cell. Endocrinol. 140:129–135.

    Google Scholar 

  19. H. Werner and D. LeRoith (1997). The insulin-like growth factor-I receptor signaling pathways are important for tumori-genesis and inhibition of apoptosis. Critic. Rev. Oncogenesis 8:71–92.

    Google Scholar 

  20. E. Feldman, K. Sullivan, B. Kim, and J. Russell (1997). Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol. Disease 4:201–214.

    Google Scholar 

  21. R. Baserga, A. Hongo, M. Rubini, M. Prisco, and B. Valentinis (1997). The IGF-I receptor in cell growth, transformation and apoptosis. Biochimica Biophysica Acta 1332:F105–126.

    Google Scholar 

  22. W. Ruan, C. Newman, and D. Kleinberg (1992). Intact and amino-terminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc. Natl. Acad. Sci. U.S.A. 89:10872–10876.

    Google Scholar 

  23. W. Ruan, V. Catanese, R. Wieczorek, M. Feldman, and D. Kleinberg (1995). Estradiol enhances the stimulatory effect of insulin-like growth factor (IGF-1) on mammary development and growth hormone-induced IGF-1 messenger ribonucleic acid. Endocrinology 136:1296–1302.

    Google Scholar 

  24. P. Walden, W. Ruan, M. Feldman, and D. Kleinberg (1998). Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology 139:659–662.

    Google Scholar 

  25. M. Weber, P. Boyle, B. Corl, E. Wong, F. Gwazdauskas, and R. Akers (1998). Expression of ovine insulin-like growth factor-1 (IGF-1) stimulates alveolar bud development in mammary glands of transgenic mice. Endocrine 8:251–259.

    Google Scholar 

  26. S. Neuenschwander, A. Schwartz, T. Wood, C. Roberts, Jr., L. Henninghausen, and D. LeRoith (1996). Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest. 97:2225–2232.

    Google Scholar 

  27. D. Hadsell, N. Greenberg, J. Fligger, C. Baumrucker, and J. Rosen (1996). Targeted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137:321–330.

    Google Scholar 

  28. P. Bates, R. Fisher, A. Ward, L. Richardson, D. Hill, and C. Graham (1995). Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Brit. J. Cancer 72:1189–1193.

    Google Scholar 

  29. W. Imagawa, E. Spencer, L. Larson, and S. Nandi (1986). Somatomedin-C substitutes for insulin for the growth of mammary epithelial cells from normal virgin mice in serum-free collagen gel cell culture. Endocrinology 119:2695–2699.

    Google Scholar 

  30. S. Deeks, J. Richards, and S. Nandi (1988). Maintenance of normal rat mammary epithelial cells by insulin and insulin-like growth factor. Exp. Cell Res. 174:448–460.

    Google Scholar 

  31. K. Karey and D. Sirbasku (1988). Differential responsiveness of human breast cancer cell lines to growth factors and 17b-estradiol. Cancer Res. 48:4083–4040.

    Google Scholar 

  32. C. Arteaga, K. Kitten, and E. Coronado (1989). Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest. 84: 1418–1423.

    Google Scholar 

  33. C. Arteaga and C. Osborne (1989). Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res. 49:6237–6241.

    Google Scholar 

  34. R. Ichinose and S. Nandi (1964). Lobuloalveolar differentiation in mouse mammary tissues. Science 145:496–497.

    Google Scholar 

  35. R. Ichinose and S. Nandi (1966). Influence of hormones on lobulo-alveolar differentiation of mouse mammary glands in vitro. J. Endocrinol. 35:331–340.

    Google Scholar 

  36. N. Ganguly, R. Ganguly, N. Mehta, L. Crump, and M. Banerjee (1981). Simultaneous occurrence of pregnancy-like lobuloal-veolar morphognesis and casein-gene expression in a culture of the whole mammary gland. In Vitro. 17:55–60.

    Google Scholar 

  37. Y. Topper, T. Oka, and B. Vonderhaar (1992). Techniques for studying development of normal mammary epithelial cells in organ culture. In B. O'Malley and J. Hardman (eds.), Methods in Enzymology, Academic Press, New York, pp. 443–454.

    Google Scholar 

  38. L. Murphy, G. Bell, and H. Friesen (1987). Tissue distribution of insulin-like growth factor I and II messenger ribonucleic acid in the adult rat. Endocrinology 120:1279–1282.

    Google Scholar 

  39. S. Hauser, M. McGrath, R. Collier, and C. Krivi (1990). Cloning and in vivo expression of bovine growth hormone receptor mRNA. Mol. Cell Endocrinol. 72:187–200.

    Google Scholar 

  40. D. Yee, S. Paik, G. Lebavic, R. Marcus, R. Favoni, K. Cullen, M. Lippman, and N. Rosen (1989). Analysis of IGF-I gene expression in malignancy-evidence for a paracrine role in human breast cancer. Mol. Endocrinol. 3:509–517.

    Google Scholar 

  41. M. Richert and T. Wood (1999). The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: Sites of messenger ribonucleic acid expression and potential functions. Endocrinology 140: 454–461.

    Google Scholar 

  42. C. Giani, K. Cullen, D. Campani, and A. Rasmussen (1996). IGF-II mRNA and protein are expressed in the stroma of invasive breast cancers: An in situ hybridization and immunohisto-chemistry study. Breast Cancer Res. Treat. 41:43–50.

    Google Scholar 

  43. K. Cullen, H. Smith, S. Hill, N. Rosen, and M. Lippman (1991). Growth factor messenger RNA expression by human breast fibroblasts from benign and malignant lesions. Cancer Res. 51:4978–4985.

    Google Scholar 

  44. D. Singh, K. Deome, and H. Bern (1970). Strain differences in response of the mouse mammary gland to hormones in vitro. J. Natl. Cancer Inst. 45:657–675.

    Google Scholar 

  45. S. P. Nissley, W. Kiess, and M. M. Sklar (1991). The IGF-II/ mannose-6-phosphate receptor. In D. LeRoith (eds.), IGFs: Molecular and Cellular Aspects, CRC Press, Boca Raton, pp. 111–150.

    Google Scholar 

  46. A. J. Filson, A. Louvi, A. Efstratiadis, and E. J. Robertson (1993). Rescue of the T-associated maternal effect in mice carrying null mutations in Igf-2 and Igf2r, two reciprocally imprinted genes. Development 118:731–736.

    Google Scholar 

  47. M. H. Lau, C. E. H. Stewart, Z. Liu, H. Bhatt, P. Rotwein, and C. L. Stewart (1994). Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal over-growth and perinatal lethality. Genes Dev. 8:2953–2963.

    Google Scholar 

  48. Z.-Q. Wang, M. R. Fung, D. P. Barlow, and E. F. Wagner (1994). Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372:464–467.

    Google Scholar 

  49. D. Clemmons, W. Busby, T. Arai, T. Nam, J. Clarke, J. Jones, and D. Ankrapp (1995). Role of insulin-like growth factor binding proteins in the control of IGF actions. Prog. Growth Factor Res. 6:357–366.

    Google Scholar 

  50. D. Clemmons. (1998). Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol. Cell. Endocrinol. 140:19–24.

    Google Scholar 

  51. D. R. Clemmons (1994). Role of post translational modifications in modifying the biologic activity of insulin-like growth factor binding proteins. In D. LeRoith and M. Raizada (eds.), Current Directions in Insulin-Like Growth Factor Research, Plenum Press, New York, pp. 245–253.

    Google Scholar 

  52. C. Sympson, R. Talhouk, C. Alexander, J. Chin, S. Clift, M. Bissell, and Z. Werb (1994). Targeted expression of stromely-sin-1 in mammary gland provides evidence for a role of protein-ases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125:681–693.

    Google Scholar 

  53. M. Richert and T. Wood (1999). Expression and regulation of insulin-like growth factors and their binding proteins in the normal breast. In A. Manni (ed.), Endocrinology of Breast Cancer, Humana Press, Totowa, New Jersey, pp. 39–52.

    Google Scholar 

  54. G. Silberstein, K. Flanders, A. Roberts, and C. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-b1. Dev. Biol. 152:354–362.

    Google Scholar 

  55. Y. Oh, Z. Gucev, L. Ng, H. Muller, and R. Rosenfeld (1995). Antiproliferative actions of insulin-like growth factor binding protein (IGFBP)-3 in human breast cancer cells. Progr. Growth Factor Res. 6:503–512.

    Google Scholar 

  56. R. Rajah, B. Valentinis, and P. Cohen (1997). Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-beta1 on programmed cell death through a p53-and IGF-independent mechanism. J. Biol. Chem. 272:12181–12188.

    Google Scholar 

  57. Y. Oh, H. Muller, L. Ng, and R. Rosenfeld (1995). Transforming growth factor-beta-induced cell growth inhibition in human breast cancer cells is mediated through insulin-like growth factor-binding protein-3 action. J. Biol. Chem. 270: 13589–13592.

    Google Scholar 

  58. Z. Gucev, Y. Oh, K. Kelley, and R. Rosenfeld (1996). Insulin-like growth factor binding protein 3 mediates retinoic acid-and transforming growth factor beta2-induced growth inhibition in human breast cancer cells. Cancer Res. 56:1545–1550.

    Google Scholar 

  59. S. Leal, Q. Liu, S. Huang, and J. Huang (1997). The type V transforming growth factor beta receptor is the putative insulin like growth factor-binding protein 3 receptor. J. Biol. Chem. 272:20572–20576.

    Google Scholar 

  60. S. Leal, S. Huang, and J. Huang (1999). Interactions of high affinity insulin-like growth factor-binding proteins with the type V transforming growth factor-b receptor in mink lung epithelial cells. J. Biol. Chem. 274:6711–6717.

    Google Scholar 

  61. D. L. Hadsell and S. G. Bonnette (2000). IGF and insulin action in the mammary gland. Lessons from transgenic and knockout models, J. Mam. Gland Biol. Neoplasia 5:xx–xx.

    Google Scholar 

  62. D. L. Kleinberg, M. Feldman, W. Ruan (2000). IGF-I: An essential factor in terminal end bud formation and ductal morphogenesis. J. Mam. Gland Biol. Neoplasia 5:xx–xx.

    Google Scholar 

  63. A. Morrione, B. Valentinis, S.-Q. Xu, G. Yumet, A. Louvi, A. Efstratiadis, and R. Baserga (1997). Insulin-like growth factor II stimulates cell proliferation through the insulin receptor. Proc. Natl. Acad. Sci. U.S.A. 94:3777–3782.

    Google Scholar 

  64. A. Louvi, D. Accili, and A. Efstratiadis (1997). Growth-pro moting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev. Biol. 89:33–48.

    Google Scholar 

  65. T. M. DeChiara, A. Efstratiadis, and E. J. Robertson (1990). A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by gene targeting. Nature 345:78–80.

    Google Scholar 

  66. W. Imagawa, J. Yang, R. Guzman, and S. Nandi (1994). Control of mammary gland development. In E. Knobil and J. D. Neill (eds.), The Physiology of Reproduction, Second Edition, Raven Press, Ltd., New York, pp. 1033–1063.

    Google Scholar 

  67. R. Humphreys, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajewski, J. Reed, and J. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122:4013–4022.

    Google Scholar 

  68. R. Humphreys (1999). Programmed cell death in the terminal end bud. J. Mam. Gland Biol. Neoplasia 4:213–220.

    Google Scholar 

  69. P. Furth (1999). Introduction: Mammary Gland Involution and Apoptosis of Mammary Epithelial Cells. J. Mam. Gland Biol. Neoplasia 4:123–128.

    Google Scholar 

  70. C. Wilde, C. Knight, and D. Flint (1999). Control of milk secretion and apoptosis during mammary involution. J. Mam. Gland Biol. Neoplasia 4:129–136.

    Google Scholar 

  71. D. J. Flint, E. Tonner, and G. J. Allan (2000). Insulin growth factor binding proteins: IGF-dependent and-independent effects in the mammary gland. J. Mam. Gland Biol. Neoplasia 5:65–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, T.L., Richert, M.M., Stull, M.A. et al. The Insulin-Like Growth Factors (IGFs) and IGF Binding Proteins in Postnatal Development of Murine Mammary Glands. J Mammary Gland Biol Neoplasia 5, 31–42 (2000). https://doi.org/10.1023/A:1009511131541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009511131541

Navigation