Skip to main content
Log in

CHF-1024, A DA2/α2 Agonist, Blunts Norepinephrine Excretion and Cardiac Fibrosis in Pressure Overload

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

We compared the effects of an ACE inhibitor, captopril, with those of a DA2-dopaminergic/α2-adrenergic receptor agonist (CHF-1024) on neuroendocrine activation and cardiac fibrosis in a model of pressure-overload hypertrophy. Interrenal aortic stenosis was performed in 89 rats, treated with CHF-1024 (0.33, 2 or 6 mg kg−1 day−1), or captopril (1 g/L). Hemodynamic variables were recorded. Cardiac and renal weights, plasma aldosterone, renin activity and urinary catecholamine excretion were measured, as well as cardiac collagen. Blood pressure was lower in stenotic animals treated with CHF-1024 compared to vehicle (161 ± 10 vs 219 ± 10 mmHg, p < 0.01), but LV weight was similar. CHF-1024 elicited a marked dose-dependent attenuation of urinary norepinephrine excretion (1.80 ± 0.18 in controls compared to 0.40 ± 0.14 μg/24 h at the highest dose, p < 0.01) and of LV perivascular fibrosis. Captopril provoked a marked hypotension, reduced cardiac and body weights, plasma aldosterone concentration, dopamine excretion and perivascular collagen. The DA22 agonist CHF-1024 effectively blunts adrenergic drive and cardiac fibrosis in a rat model of pressure overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ho KKL, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham study. J Am Coll Cardiol 1993; 22: 6A-13A.

    PubMed  Google Scholar 

  2. Ostman-Smith I. Reduction by oral propranolol treatment of left ventricular hypertrophy secondary to pressureoverload in the rat. Br J Pharmacol 1995; 116:27 03-09.

    Google Scholar 

  3. V. Weinberg EO, Schoen FJ, George D, et al. Angiotensinconverting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 1994; 90:14 10-22.

    Google Scholar 

  4. Regan CP, Anderson PG, Bishop SP, Berecek KH. Pressureindependent effects of AT1-receptor antagonism on cardiovascular remodeling in aortic-banded rats. Am J Physiol 1997; 272:H21 31-38.

    Google Scholar 

  5. Hocher B, George I, Rebstock J, et al. Endothelin systemdependent cardiac remodeling in renovascular hypertension. Hypertension 1999; 33:8 16-22.

    Google Scholar 

  6. Rona, G. Catecholamine cardiotoxicity. J Molec Cell Cardiol 1985; 17: 291-306.

    Google Scholar 

  7. Haeusler G, Lues I, Minck KO, Schelling P, Seyfried CA. Pharmacological basis for antihypertensive therapy with a novel dopamine agonist. Eur Heart J 1992; 13:D1 29-35.

    PubMed  Google Scholar 

  8. Takechi S, Nomura A, Shimoni H, et al. Recovery of cardiac norepinephrine concentration and tyrosine hydroxylase activity by the central α2-adrenoceptor agonist guanabenz in rats with aortic constriction. J Cardiovasc Pharmacol 1999; 33: 409-13.

    PubMed  Google Scholar 

  9. Latini R, Masson S, Jeremic G, et al. Comparative efficacy of a DA2/α2 agonist and a β-blocker in reducing adrenergic drive and cardiac fibrosis in an experimental model of left ventricular dysfunction after coronary artery occlusion. J Cardiovasc Pharmacol 1998; 31:6 01-08.

    Google Scholar 

  10. Masson S, Masseroli M, Fiordaliso F, et al. Effects of a DA2/α2 agonist and a β1-blocker in combination with an ACE inhibitor on adrenergic activity and left ventricular remodeling in an experimental model of left ventricular dysfunction after coronary artery occlusion. J Cardiovasc Pharmacol 1999; 34: 321-26.

    PubMed  Google Scholar 

  11. Stegemann H, Stalder K. Determination of hydroxyproline. Clin Chim Acta 1967; 18:2 67-73.

    Google Scholar 

  12. Masson S, Arosio B, Luvarà G, et al. Remodelling of cardiac extracellular matrix during β-adrenergic stimulation: up-regulation of SPARC in the myocardium of adult rats. J Molec Cell Cardiol 1998; 30:15 05-14.

    Google Scholar 

  13. Nicoletti A, Heudes D, Hinglais N, et al. Left ventricular fibrosis in renovascular hypertensive rats. Effect of losartan and spironolactone. Hypertension 1995; 26:1 01-11.

    Google Scholar 

  14. Ratajska A, Campbell SE, Cleutjens JP, Weber KT. Angiotensin II and structural remodeling of coronary vessels in rats. J Lab Clin Med 1994: 124:4 08-15.

    Google Scholar 

  15. Chomczynski P, Sacchi N. Single-step method ofRNAIsolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162:1 56-59.

    Google Scholar 

  16. Crippa G, Umile A, Carrara GC, Reyes AJ. First clinical experience with the new oral dopaminergic CHF 1035 in congestive heart failure. J Heart Failure 1995; 2: 590.

    Google Scholar 

  17. Puccini P, Zanelli U, Spinabelli D, et al. In vivo metabolism of CHF 1035, a chiral aminotetralin, in the rat. Pharmacol Res 1997; 35: 209 (Abstract).

    Google Scholar 

  18. Linz W, Schaper J, Wiemer G, Albus U, Scholkens BA. Ramipril prevents left ventricular hypertrophy with myocardial fibrosis without blood pressure reduction: a one year study in rats. Br J Pharmacol 1992; 107: 970-75.

    PubMed  Google Scholar 

  19. Reddy DS, Singh M, Ghosh S, Ganguly NK. Role of cardiac renin-angiotensin system in the development of pressureoverload left ventricular hypertrophy in rats with abdominal aortic constriction. Molec Cell Biochem 1996: 155: 1-11.

    PubMed  Google Scholar 

  20. Grimm D, Kromer EP, Bocker W, et al. Regulation of extracellular matrix proteins in pressure-overload cardiac hypertrophy: effects of angiotensin converting enzyme inhibition. J Hypertens 1998; 16:13 45-55.

    PubMed  Google Scholar 

  21. Berndt TJ, MacDonald A, Walikonis R, et al. Excretion of catecholamines and metabolites in response to increased dietary phosphate intake. J Lab Clin Med 1993; 122: 80-84.

    PubMed  Google Scholar 

  22. Bohmann C, Schaible U, Schollmeyer P, Rump LC. Alpha(2D)-adrenoceptors modulate renal noradrenaline release in normotensive and spontaneously hypertensive rats. Eur J Pharmacol 1994; 271:2 83-92.

    Google Scholar 

  23. Heller LJ, Opsahl JA, Wernsing SE, Saxena R, Katz SA. Myocardial and plasma renin-angiotensinogen dynamics during pressure-induced cardiac hypertrophy. Am J Physiol 1998; 274:R8 49-56.

    Google Scholar 

  24. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 1990; 67:13 55-64.

    Google Scholar 

  25. Baker KA, Chernin MI, Wixson SK Aceto JF. Reninangiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 1990; 259:H3 24-32.

    Google Scholar 

  26. Schricker K, Hamann M, Macher A, Kramer BK, Kaissling B, Kurtz A. Effect of amlodipine on renin secretion and renin gene expression in rats. Br J Pharmacol 1996; 119:7 44-50.

    Google Scholar 

  27. Kromer EP, Riegger GAJ. Effects of long-term angiotensin converting enzyme inhibition on myocardial hypertrophy in experimental aortic stenosis in the rat. Am J Cardiol 1988; 62:1 61-63.

    Google Scholar 

  28. Linz W, Scholkens BA, Ganten D. Converting enzyme inhibition specifically prevents the development and induces the regression of cardiac hypertrophy in rats. Clin Exp Hypertens 1989; 11:13 25-50.

    Google Scholar 

  29. Zierhut W, Zimmer HG, Gerdes AM. Effect of angiotensin converting enzyme inhibition on pressure-induced left ventricular hypertrophy in rats. Circ Res 1991; 69:6 09-17.

    Google Scholar 

  30. Mohabir R, Young SD, Strosberg AM. Role of angiotensin in pressure overload-induced hypertrophy in rats: effects of angiotensin-converting enzyme inhibitors, an AT1 receptor antagonist, and surgical reversal. J Cardiovasc Pharmacol 1994; 23:2 91-99.

    Google Scholar 

  31. Regan CP, Anderson PG, Bishop SP, Berecek KH. Captopril prevents vascular and fibrotic changes but not cardiac hypertrophy in aortic-banded rats. Am J Physiol 1996; 271:H9 06-13.

    Google Scholar 

  32. Harada K, Komuro I, Shiojima I, et al. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998; 97:19 52-59.

    Google Scholar 

  33. Bhambi B, Eghbali M. Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathol 1991; 139:11 31-42.

    Google Scholar 

  34. Weber KT, Sun Y, Guarda E. Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 1994; 23:8 69-77.

    Google Scholar 

  35. Kim S, Ohta K, Hamaguchi A, et al. AT1 receptor-mediated stimulation by angiotensin II of rat aortic fibronection gene expression in vivo. Br J Pharmacol 1994; 113:6 62-63.

    Google Scholar 

  36. Zhou G, Kandala JC, Tyagi SC, Katwa LC, Weber KT. Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Molec Cell Biochem 1996; 154:1 71-78.

    PubMed  Google Scholar 

  37. Villarreal FJ, Dillmann WH. Cardiac hypertrophy-induced changes in mRNA levels for TGF-β1, fibronectin, and collagen. Am J Physiol 1992; 262:H18 61-66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masson, S., Chimenti, S., Salio, M. et al. CHF-1024, A DA2/α2 Agonist, Blunts Norepinephrine Excretion and Cardiac Fibrosis in Pressure Overload. Cardiovasc Drugs Ther 15, 131–138 (2001). https://doi.org/10.1023/A:1011170812267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011170812267

Navigation