Skip to main content
Log in

The Role of Interleukin-1 in the Failing Heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The prevalance of congestive heart failure and its continued poor prognosis despite presently available therapeutic options emphasize the importance of pursuing the observations suggesting an important role for an immunomodulatory approach to decompensated cardiac failure. Furthermore, there are several pieces of background information that suggest that cytokines like IL-1 may play a significant role in the pathogenesis of several forms of myocardial dysfunction. Although it seems clear that IL-1 is not acting alone under circumstances of myocardial injury, but in concert with other pro-inflammatory molecules and their effectors, we believe that continued investigations into the cytokine hypothesis will ultimately increase the understanding of how pro-inflammatory molecules influence myocardial function and how the modulation of such factors may improve the myocardial response to injury. The specific observations that emphasize the importance of pursuing a substantive role for IL-1 in this process are: (1) IL-1 is elevated in several cardiac disease states, (2) IL-1 is produced by myocardial cells themselves in response to injury, (3)

The alterations in gene expression seen in response IL-1 resembles in many ways the phenotype of the failing heart, and (4) The co-localization of the IL-1 response with that of several previously described negative transcriptional regulators (making them potential targets for therapeutic manipulation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mauviel A. Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 1993;53:288–295.

    Google Scholar 

  2. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 1995;30:537–543.

    Google Scholar 

  3. Li YY, McTiernan CF, Feldman AM. Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res 1999;42:162–172.

    Google Scholar 

  4. Palmer JN, Hartogensis WE, Patten M, Fortuin FD, Long CS. Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 1995;95:2555–2564.

    Google Scholar 

  5. Patten M, Hartogensis WE, Long CS. IL-1β is a negative regulator of α1-adrenergic induced cardiac gene expression. J Biol Chem 1996;271: 21134–21141.

    Google Scholar 

  6. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 1995;96:1093–1099.

    Google Scholar 

  7. McTiernan CF, Lemster BH, Frye C, Brooks S, Combes A, Feldman AM. Interleukin-1 beta inhibits phospholamban gene expression in cultured cardiomyocytes. Circ Res 1997;81:493–503.

    Google Scholar 

  8. Kacimi R, Long CS, Karliner JS. Chronic hypoxia modulates the interleukin-1beta-stimulated inducible nitric oxide synthase pathway in cardiac myocytes. Circulation 1997;96:1937–1943.

    Google Scholar 

  9. Kacimi R, Karliner JS, Koudssi F, Long CS. Expression and regulation of adhesion molecules in cardiac cells by cytokines. Circ Res 1998;82:576–586.

    Google Scholar 

  10. LaPointe MC, Isenovic E. Interleukin-1beta regulation of inducible nitric oxide synthase and cyclooxygenase-2 involves the p42/44 and p38 MAPK signaling pathways in cardiac myocytes. Hypertension 1999;33:276–282.

    Google Scholar 

  11. Han R, Ray P, Baughman K, Feldman A. Detection of interleukin and inteleukin-receptor mRNA in human heart by polymerase chain reaction. Biochem Biophys Res Comm 1991;181:520–523.

    Google Scholar 

  12. Francis SE, Holden H, Holt CM, Duff GW. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol 1998;30:215–223.

    Google Scholar 

  13. Satoh M, Tamura G, Segawa I, Tashiro A, Hiramori K, Satodate R. Expression of cytokine genes and presence of enteroviral genomic RNA in endomyocardial biopsy tissues of myocarditis and dilated cardiomyopathy. Virchows Arch 1996;427:503–509.

    Google Scholar 

  14. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 1994;72:561–566.

    Google Scholar 

  15. Guillen I, Blanes M, Gomez-Lechon M-J, Castell JV. Cytokine signaling during myocardial infarction: sequential appearance of IL-1β and IL-6. Am J Physiol 1995;269:R229-R235.

    Google Scholar 

  16. Lagoo AS, George JF, Naftel DC, Griffin AK, Kirklin JK, Lagoo DS, Hardy KJ, Savunen T, McGiffin DC. Semiquantitative measurement of cytokine messenger RNA in endomyocardium and peripheral blood mononuclear cells from human heart transplant recipients. J Heart Lung Transplant 1996;15:206–217.

    Google Scholar 

  17. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 1996;183:949–958.

    Google Scholar 

  18. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, LeJemtel TH. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996;28:964–971.

    Google Scholar 

  19. Yegin O, Coskun M, Ertug H. Cytokines in acute rheumatic fever. Eur J Pediatr 1997;156:25–29.

    Google Scholar 

  20. Cain BS, Meldrum DR, Dinarello CA, Meng X, Joo KS, Banerjee A, Harken AH. Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function [see comments]. Critical Care Medicine 1999;27:1309–1318.

    Google Scholar 

  21. Yue P, Massie BM, Simpson PC, Long CS. Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure. Am J Physiol 1998;275:H250-H258.

    Google Scholar 

  22. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 1998;98: 149–156.

    Google Scholar 

  23. Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S. Increased expression of interleukin-1β and monocyte chemotactic and activating factor/ monocyte chemoattracting protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 1997;81:664–671.

    Google Scholar 

  24. Chandrasekar B, Melby PC, Troyer DA, Colston JT, Freeman GL. Temporal expression of pro-inflammatory cytokines and inducible nitric oxide synthase in experimental acute Chagasic cardiomyopathy. Am J Pathol 1998;152:925–934.

    Google Scholar 

  25. Freeman GL, Colston JT, Zabalgoitia M, Chandrasekar B. Contractile depression and expression of proinflammatory cytokines and iNOS in viral myocarditis. Am J Physiol 1998;274:H249–258.

    Google Scholar 

  26. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 2000;101:2103–2109.

    Google Scholar 

  27. Kubota T, Bounoutas GS, Miyagishima M, Kadokami T, Sanders VJ, Bruton C, Robbins PD, McTiernan CF, Feldman AM. Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy [In Process Citation]. Circulation 2000;101:2518–2525.

    Google Scholar 

  28. Long CS, Palmer JN, Hartogensis W, Honbo N, Miguel T, Grunfeld C, Karliner JS. Hypoxia stimulates interleukin-1 RNA expression by cardiac nonmyocytes in culture. Clin Res 1993;41:145A (abstract).

    Google Scholar 

  29. Hosenpud J, Campbell S, Mendelson D. Interleukin-1-induced myocardial depression in an isolated beating heart preparation. J HeartTransplant 1989;8:460–464.

    Google Scholar 

  30. Weissensee D, Bereiter-Hahn J, Schoeppe W, Löw-Friedrich I. Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmac 1993;15:581–587.

    Google Scholar 

  31. Evans HG, Lewis MJ, Shah AM. Interleukin-1 beta modulates myocardial contraction via dexamethasone sensitive production of nitric oxide [see comments]. Cardiovasc Res 1993;27:1486–1490.

    Google Scholar 

  32. Oyama J, Shimokawa H, Momii H, Cheng X, Fukuyama N, Arai Y, Egashira K, Nakazawa H, Takeshita A. Role of nitric oxide and peroxynitrite in the cytokine-induced sustained myocardial dysfunction in dogs in vivo. J Clin Invest 1998;101: 2207–2214.

    Google Scholar 

  33. Gullestad L, Aukrust P, Ueland T, Espevik T, Yee G, Vagelos R, Froland SS, Fowler M. Effect of IL-1 and the Failing Heart 91 high-versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure [see comments]. J Am Coll Cardiol 1999;34: 2061–2067.

    Google Scholar 

  34. Matsumori A, Ono K, Nishio R, Nose Y, Sasayama S. Amlodipine inhibits the production of cytokines induced by ouabain. Cytokine 2000;12:294–297.

    Google Scholar 

  35. Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, Frazier OH, Entman ML, Noon GP. Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: A potential mechanism for cardiac recovery. Circulation 1999;100:1189–1193.

    Google Scholar 

  36. Kapadia S, Torre-Amione G, Yokoyama T, Mann DL. Soluble TNF binding proteins modulate the negative inotropic properties of TNF-alpha in vitro. Am J Physiol 1995;268:H517-H525.

    Google Scholar 

  37. Deswal A, Seta Y, Bozkurt B, Parilti-Eiswirth S, Hayes A, Blosch CM, Mann DL. Safety and Efficacy of a Soluble P75 Tumor necrosis factor receptor (Enbrel, Etanercept) in patients with advanced heart failure. Circulation 1999;99:3224–3226.

    Google Scholar 

  38. de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF. Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease. Br Heart J 1995;74:426–430.

    Google Scholar 

  39. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopath [see comments]. Lancet 1996;347: 1151–1155.

    Google Scholar 

  40. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93:1087–1094.

    Google Scholar 

  41. Roberts AB, Vodovotz Y, Roche NS, Sporn MB, Nathan CF. Role of nitric oxide in antagonistic effects of transforming growth factor-beta and interleukin-1beta on the beating rate of cultured cardiac myocytes. Mol Endocrinol 1992;6:1921–1930.

    Google Scholar 

  42. Keaney JF, Jr, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibitionof nitric oxide synthase augmentsmyocardial contractile responses to beta-adrenergic stimulation. Am J Physiol 1996;271: H2646-H2652.

    Google Scholar 

  43. Kojda G, Kottenberg K. Regulation of basal myocardial function by NO. Cardiovasc Res 1999;41:514–523.

    Google Scholar 

  44. Tsujino M, Hirata Y, Imai T, Kanno K, Eguchi S, Ito H, Marumo F. Induction of nitric oxide synthase gene by interleukin-1 beta in cultured rat cardiocytes. Circulation 1994;90:375–383.

    Google Scholar 

  45. Balligand JL, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, Taha Z, Lowenstein CJ, Davidoff AJ, Kelly RA, et al.. Cytokine-inductible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single caridiac myocytes in vitro. J Biol Chem 1994;269:27580–27588.

    Google Scholar 

  46. LaPointe MC, Sitkins JR. Mechanisms of interleukin-1beta regulation of nitric oxide synthase in cardiac myocytes. Hypertension 1996;27:709–714.

    Google Scholar 

  47. He Q, LaPointe MC. Interleukin-1beta regulation of the human brain natriuretic peptide promoter involves Ras-, Rac-, and p38 kinase-dependent pathways in cardiac myocytes. Hypertension 1999;33: 283–289.

    Google Scholar 

  48. Bezie Y, Mesnard L, Longrois D, Samson F, Perret C, Mercadier JJ, Laurent S. Interactions between endothelin-1 and atrial natriuretic peptide influence cultured chick cardiac myocyte contractility. Eur J Pharmacol 1996;311:241–248.

    Google Scholar 

  49. Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997;272:14860–14866.

    Google Scholar 

  50. Horio T, Nishikimi T, Yoshihara F, Matsuo H, Takishita S, Kangawa K. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension 2000;35:19–24.

    Google Scholar 

  51. Oral H, Dorn GW, 2nd, Mann DL. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem 1997;272: 4836–4842.

    Google Scholar 

  52. Kuno K, Matsushima K. The IL-1 receptor signaling pathway. J Leukoc Biol 1994;56:542–547.

    Google Scholar 

  53. Kang PM, Izumo S. Apoptosis and heart failure: A critical review of the literature. Circ Res 2000;86: 1107–1113.

    Google Scholar 

  54. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 1999;84:21–33.

    Google Scholar 

  55. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA. Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation [see comments]. Circ Res 1999;85:829–840.

    Google Scholar 

  56. Pinsky DJ, Aji W, Szabolcs M, Athan ES, Liu Y, Yang YM, Kline RP, Olson KE, Cannon PJ. Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocytes in culture. Am J Physiol 1999;277:H1189-H1199.

    Google Scholar 

  57. Levy D, Anderson KM, Savage DD, Balkus SA, Kannel WB, Castelli WP. Risk of ventricular arrhythmias in left ventricular hypertrophy: the Framingham Heart Study. Am J Cardiol 1987;60:560–565.

    Google Scholar 

  58. Packer M. Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 1985;72:681–685.

    Google Scholar 

  59. Kannel WB, Plehn JF, Cupples LA. Cardiac failure and sudden death in the Framingham Study. Am Heart J 1988;115:869–875.

    Google Scholar 

  60. Ferrier GR, Moffat MP, Lukas A. Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion. Studies on isolated canine ventricular tissues. Circ Res 1985;56:184–194.

    Google Scholar 

  61. Aronson RS. Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal hypertension. Circ Res 1981;48:720–727.

    Google Scholar 

  62. Ming Z, Nordin C, Aronson RS. Role of L-type calcium channel window current in generating current-induced 92 Long early afterdepolarizations. J Cardiovasc Electrophysiol 1994;5:323–334.

    Google Scholar 

  63. Dangman KH, Dresdner KJ, Zaim S. Automatic and triggered impulse initiation in canine subepicardial ventricular muscle cells from border zones of 24-hour transmural infarcts. New mechanisms for malignant cardiac arrhythmias? Circulation 1988;78:1020–1030.

    Google Scholar 

  64. Bick RJ, Liao JP, King TW, LeMaistre A, McMillin JB, Buja LM. Temporal effects of cytokines on neonatal cardiac myocyte Ca2+ transients and adenylate cyclase activity. Am J Physiol 1997;272: H1937-H1944.

    Google Scholar 

  65. Bick RJ, Wood DE, Poindexter B, McMillin JB, Karoly A, Wang D, Bunting R, McCann T, Law GJ, Buja LM. Cytokines increase neonatal cardiac myocyte calcium concentrations: the involvement of nitric oxide and cyclic nucleotides. Journal of Interferon & Cytokine Research 1999;19:645–653.

    Google Scholar 

  66. Brown J, White C, Terada L, Grosso M, Shanley P, Mulvin D, Banerjee A, Whitman G, Harken A, Repine J. Interleukin 1 pretreatment decreases ischemia/reperfusion injury. Proc Natl Acad Sci (USA) 1990;87:5026–5030.

    Google Scholar 

  67. Eddy L, Goeddel D, Wong G. Tumor necrosis factor-± pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Comm 1992;184:1056–1059.

    Google Scholar 

  68. Maulik N, Engelman RM, Wei Z, Lu D, Rousou JA, Das DK. Interleukin-1 alpha preconditioning reduces myocardial ischemia reperfusion injury. Circulation 1993;88:II387-II394.

    Google Scholar 

  69. Nogae C, Makino N, Hata T, Nogae I, Takahashi S, Suzuki K, Taniguchi N, Yanaga T. Interleukin 1 alpha-induced expression of manganous superoxide dismutase reduces myocardial reperfusion injury in the rat. J Mol Cell Cardiol 1995;27:2091–2099.

    Google Scholar 

  70. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci US A 2000;97:5456–5461.

    Google Scholar 

  71. Katagiri T, Kitsu T, Akiyama K, Takeyama Y, Niitani H. Alterations in fine structures of myofibrils and structural proteins in patients with dilated cardiomyopathy–studies with biopsied heart tissues. Jpn Circ J 1987;51:682–688.

    Google Scholar 

  72. Zimmer G, Zimmermann R, Hess OM, Schneider J, Kubler W, Krayenbuehl HP, Hagl S, Mall G. Decreased concentration of myofibrils and myoÆber hypertrophy are structural determinants of impaired left ventricular function in patients with chronic heart diseases: a multiple logistic regression analysis. J Am Coll Cardiol 1992;20:1135–1142.

    Google Scholar 

  73. MacLellan WR, Lee TC, Schwartz RJ, Schneider MD. Transforming growth factor-beta response elements of the skeletal alpha-actin gene. Combinatorial action of serum response factor, YY1, and the SV40 enhancerbinding protein, TEF-1. J Biol Chem 1994;269: 16754–16760.

    Google Scholar 

  74. Kariya K-I, Farrance IKG, Simpson PC. Transcriptional enhancer factor-1 in cardiac myocytes interacts with an α1-adrenergic-and β-protein kinase C-inducible element in the rat β-myosin heavy chain promoter. J Biol Chem 1993;268:26658–26662.

    Google Scholar 

  75. Karns LR, Kariya K, Simpson PC. M-CAT, CArG, and Sp1 elements are required for alpha 1-adrenergic induction of the skeletal alpha-actin promoter during cardiac myocyte hypertrophy. Transcriptional enhancer factor-1 and protein kinase C as conserved transducers of the fetal program in cardiac growth. J Biol Chem 1995;270:410–417.

    Google Scholar 

  76. Patten M, Wang W, Shakeri S, Burson M, Long CS. IL-1β increases YY1 abundance and DNA-binding activity in cultured cardiac myocytes. J Mol Cell Cardiol 2000;32:1341–1352.

    Google Scholar 

  77. Rohrer DK, Hartong R, Dillmann WH. Influence of thyroid hormone and retinoic acid on slow sarcoplasmic reticulum Ca2+ ATPase and myosin heavy chain alpha gene expression in cardiac myocytes. Delineation of cis-active DNA elements that confer responsiveness to thyroid hormone but not to retinoic acid. J Biol Chem 1991;266:8638–8646.

    Google Scholar 

  78. Collie ES, Muscat GE. The human skeletal alphaactin promoter is regulated by thyroid hormone: identification of a thyroid hormone response element. Cell Growth Differ 1993;4:269–279.

    Google Scholar 

  79. Gustafson TA, Markham BE, Morkin E. Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 1986;59: 194–201.

    Google Scholar 

  80. Patten M, Long CS. IL-1b blocks thyroid hormone regulation of alpha and beta myosin heavy chain. Circulation 1996;94:I-531.

    Google Scholar 

  81. Palma EC, Keung EC, Simpson PC, Lon CS, Lee RJ. Cytokine-induced triggered activity in isolated neonatal rat myocytes: a new mechanism of arrhythmogenesis. PACE 1998;21: 898 (abstract).

    Google Scholar 

  82. O'Neill LA, Greene C. Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 1998;63:650–657.

    Google Scholar 

  83. Pfahl M. Nuclear Receptor/AP-1 interaction. Endocrine Reviews 1993;14:651–658.

    Google Scholar 

  84. Zhang X-K, Wills K, Husmann M, Herrmann T, Pfahl M. Novel pathway for thyroid hormone receptor action through interaction with jun and fos oncogene activities. Mol Cell Biol 1991;11:6016–6025.

    Google Scholar 

  85. Muegge K, Vila M, Gusella G, Musso T, Herrlich P, Stein B, Durum S. Interleukin 1 induction of the c-jun promoter. Proc Natl Acad Sci USA 1993;90: 7054–7058.

    Google Scholar 

  86. Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2–5 homeobox gene pathway. Development 1997;124:793–804.

    Google Scholar 

  87. Jeyaseelan R, Poizat C, Baker RK, Abdishoo S, Isterabadi LB, Lyons GE, Kedes L. A novel cardiacrestricted target for doxorubicin. CARP, a nuclearmodulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem 1997;272:22800–22808.

    Google Scholar 

  88. Chu W, Burns DK, Swerlick RA, Presky DH. Identification and characterization of a novel cytokine-inducible nuclear protein from human endothelial cells. J Biol Chem 1995;270:10236–10245.

    Google Scholar 

  89. Takimoto E, Mizuno T, Terasaki F, Shimoyama M, Honda H, Shiojima I, Hiroi Y, Oka T, Hayashi D, Hirai H, Kudoh S, Toko H, Kawamura K, Nagai R, Yazaki Y, Komuro I. Up-regulation of natriuretic peptides in the ventricle of Csx/Nkx2–5 transgenic mice. Biochem Biophys Res Commun 2000;270: 1074–1079.

    Google Scholar 

  90. Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 1991;126:4223–4234.

    Google Scholar 

  91. Zhu H, Garcia AV, Ross RS, Evans SM, Chien KR. A conserved 28-base-pair element (HF-1) in the rat cardiac myosin light-chain-2 gene confers cardiacspecific and alpha-adrenergic-inducible expression in cultured neonatal rat myocardial cells. Mol Cell Biol 1991;11:2273–2281.

    Google Scholar 

  92. Navankasattusas S, Zhu H, Garciaz AV, Evans SM, Chien KR. A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-1b/MEF-2) form an E-box-independent pathway for cardiac muscle gene expression. Mol Cell Biol 1992;12:1469–1479.

    Google Scholar 

  93. Zou Y, Chien KR. EFIA/YB-1 is a component of cardiac HF-1A binding activity and positively regulates transcription of the myosin light-chain 2v gene. Mol Cell Biol 1995;15:2972–2982.

    Google Scholar 

  94. Chen CY, Schwartz RJ. Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity. Mol Endocrinol 1997;11:812–822.

    Google Scholar 

  95. Lee TC, Chow K-L, Fang P, Schwartz RJ. Activation of skeletal a-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol Cell Biol 1991;11: 5090–5100.

    Google Scholar 

  96. Vincent CK, Gualberto A, Patel CV, Walsh K. Different regulatory sequences control creatine kinase-M gene expression in directly injected skeletal and cardiac muscle. Mol Cell Biol 1993;13:1264–1272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, C.S. The Role of Interleukin-1 in the Failing Heart . Heart Fail Rev 6, 81–94 (2001). https://doi.org/10.1023/A:1011428824771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011428824771

Navigation