Skip to main content
Log in

Pharmacogenetics and Anticoagulant Therapy

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Warfarin and other coumarins are metabolized by the cytochrome P450 2C9 complex. Common single-nucleotide polymorphisms (SNPs) in this enzyme are associated with an exaggerated elevation in the INR during warfarin initiation and an increased risk of bleeding. These observations suggest that patients known to carry the putative SNPs should be started on lower doses of warfarin therapy or have their INR values monitored more frequently during warfarin initiation. Such clinical variables as age, body surface area, and concomitant medications also play important roles in determining the maintenance dose of warfarin. Thus, a comprehensive dosing algorithm offers the most promising approach to estimating the therapeutic dose of warfarin a priori and to preventing hemorrhage during warfarin induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gage BF, Cardinalli AB, Albers GW, Owens D. Costeffectiveness of warfarin and aspirin for prophylaxis of stroke in patients with nonvalvular atrial fibrillation. JAMA 1995;274:1839-1845.

    Google Scholar 

  2. Atrial Fibrillation Investigators. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation Arch Intern Med 1994;154:1449-1457.

    Google Scholar 

  3. Van Walraven C, Hart RG, Singer DE, et al. Oral anticoagulants vs aspirin in nonvalvular atrial fibrillation: An individual patient meta-analysis. JAMA 2002;288:2441-2448.

    Google Scholar 

  4. Olsson SB for the Executive Steering Committee on behalf of the SPORTIF III Investigators. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlledd trial. Lancet 2003;362:1691-1698.

    Google Scholar 

  5. Hurlen M, Abdelnoor M, Smith P, et al. Warfarin, aspirin, or both after myocardial infarction. N Engl J Med 2002;347:969-974.

    Google Scholar 

  6. van Es RF, Jonker JJ, Verheugt FW, et al. Aspirin and coumadin after acute coronary syndromes (the ASPECT-2 study): A randomised controlled trial. Lancet 2002;360: 109-113.

    Google Scholar 

  7. Ridker PM, Goldhaber SZ, Danielson E, et al. Long-term, low-intensity warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med 2003;348: 1425-1434.

    Google Scholar 

  8. Francis CW, Davidson BL, Berkowitz SD, et al. Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty. A randomized, double-blind trial. Ann Intern Med 2002;137:648-655.

    Google Scholar 

  9. Prandoni P, Bruchi O, Sabbion P, et al. Prolonged thromboprophylaxis with oral anticoagulants after total hip arthroplasty: A prospective controlled randomized study. Arch Intern Med 2002;162:1966-1971.

    Google Scholar 

  10. Redman AR. Implications of cytochrome P450 2C9 polymorphism on warfarin metabolism and dosing. Pharmacotherapy 2001;21:235-242.

    Google Scholar 

  11. Azar AJ, Deckers JW, Rosendaal FR, et al. Assessment of therapeutic quality control in a long-term anticoagulant trial in post-myocardial infarction patients. Thromb Hemostas 1994;72:347-351.

    Google Scholar 

  12. Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulationrelated outcomes during warfarin therapy. JAMA 2002;287:1690-1698.

    Google Scholar 

  13. Landefeld SC, Beyth R. Anticoagulant-related bleeding: Clinical epidemiology, prediction and prevention. Am J Med 1993;95:315-328.

    Google Scholar 

  14. Fihn SD, McDonell M, Martin D, et al. Risk factors for complications of chronic anticoagulation. A multicenter study. Ann Intern Med 1993;118:511-520.

    Google Scholar 

  15. Douketis JD, Foster GA, Crowther MA, et al. Clinical risk factors and timing of recurrent venous thromboembolism during the initial 3 months of anticoagulant therapy. Arch Intern Med 2000;160:3431-3436.

    Google Scholar 

  16. Beyth RJ, Quinn L, Landefeld CS. A multicomponent intervention to prevent major bleeding complications in older patients receiving warfarin. A Randomized, Controlled Trial. Ann Intern Med 2000;133:687-695.

    Google Scholar 

  17. Fennerty A, Dolben J, Thomas P, et al. Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J (Clin Res Ed) 1984;288:1268-1270.

    Google Scholar 

  18. Harrison L, Johnston M, Massicotte MP, et al. Comparison of 5-mg and 10-mg loading doses in initiation of warfarin therapy. Ann Intern Med 1997;126:133-136.

    Google Scholar 

  19. Gedge J, Orme S, Hampton KK, et al. A comparison of a low-dose warfarin induction regimen with the modi-fied Fennerty regimen in elderly inpatients. Age Ageing 2000;29:31-34.

    Google Scholar 

  20. O'Connell MB, Kowal PR, Allivato CJ, Repka TL. Evaluation of warfarin initiation regimens in elderly inpatients. Pharmacotherapy 2000;20:923-930.

    Google Scholar 

  21. Roberts GW, Druskeit T, Jorgensen LE, et al. Comparison of an age adjusted warfarin loading protocol with empirical dosing and Fennerty's protocol. Aust N Z J Med 1999;29:731-736.

    Google Scholar 

  22. Oates A, Jackson PR, Austin CA, Channer KS. A new regimen for starting warfarin therapy in out-patients. Br J Clin Pharmacol 1998;46:157-161.

    Google Scholar 

  23. Kovacs MJ, Rodger M, Anderson DR, et al. Comparison of 10-mg and 5-mg warfarin initiation nomograms together with low-molecular-weight heparin for outpatient treatment of acute venous thromboembolism. A Randomized, Double-Blind, Controlled Trial. Ann Intern Med 2003;138:714-719.

    Google Scholar 

  24. Majeed A, Moser K, Carroll K. Trends in the prevalence and management of atrial fibrillation in general practice in England and Wales, 1994-1998: Analysis of data from the general practice research database. Heart 2001;86:284-288.

    Google Scholar 

  25. Roberts G, Trine H, Nielsen CB, et al. Assessment of an age-adjusted warfarin initiation protocol. Ann Pharmacother 2003;37:799-803.

    Google Scholar 

  26. Beyth RJ, Milligan PE, Gage BF. Risk factors for bleeding in patients taking coumarins. Curr Hem Reports 2002;1:41-49.

    Google Scholar 

  27. Beyth RJ, Quinn LM, Landefeld CS. Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin. Am JMed 1998;105: 91-99.

    Google Scholar 

  28. Wells PS, Forgie MA, Simms M, et al. The outpatient bleeding risk index: Validation of a tool for predicting bleeding rates in patients treated for deep venous thrombosis and pulmonary embolism. Arch Intern Med 2003;163:917-920.

    Google Scholar 

  29. Kuijer PM, Hutten BA, Prins MH, Buller HR. Prediction of the risk of bleeding during anticoagulant treatment for venous thromboembolism. Arch Intern Med 1999;159:457-460.

    Google Scholar 

  30. Gage BF, Yan Y, Milligan PE, et al. Validation of clinical classification schemes for predicting hemorrhage: Results from the national registry of atrial fibrillation (abstract). J Thromb Thrombolysis 2003.

  31. Absher RK, Moore ME, Parker MH. Patient-specific factors predictive of warfarin dosage requirements. Ann Pharmacother 2002;36:1512-1517.

    Google Scholar 

  32. Gage BF, Eby C, Milligan PE, et al. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 2004;91:87-94.

    Google Scholar 

  33. Gurwitz J, Avorn J, Ross-Degnan D, et al. Aging and the anticoagulant response to warfarin therapy. Ann Intern Med 1992;116:901-904.

    Google Scholar 

  34. Routledge P, Chapman P, Davies D, Rawlins M. Factors affecting warfarin requirements: A prospective population study. Eur J Clin Pharmacol 1979;15:319-322.

    Google Scholar 

  35. James AH, Britt RP, Raskino CL, Thompson SG. Factors affecting the maintenance dose of warfarin. J Clin Pathol 1992;45:704-706.

    Google Scholar 

  36. Wynne H, Cope L, Kelly P, et al. The influence of age, liver size and enantiomer concentrations on warfarin requirements. Br J Clin Pharmacol 1995;40:203-207.

    Google Scholar 

  37. Shepherd AM, Hewick DS, Moreland TA, Stevenson IH. Age as a determinant of sensitivity to warfarin. Br J Clin Pharmacol 1977;4:315-320.

    Google Scholar 

  38. Loebstein R, Yonath H, Peleg D, et al. Interindividual variability in sensitivity to warfarin-Nature or nurture? Clin Pharmacol Ther 2001;70:159-164.

    Google Scholar 

  39. Mungall DR, Ludden TM, Marshall J, et al. Population kinetics of racemic warfarin. Journal of Pharmacokinetics and Biopharmaceutics 1985;13:213-227.

    Google Scholar 

  40. Gage BF, Fihn SD, White RH. Management and dosing of warfarin therapy. Am J Med 2000;109:481-488.

    Google Scholar 

  41. Sanoski CA, Bauman JL. Clinical observations with the amiodarone/warfarin interaction: Dosing relationships with long-term therapy. Chest 2002;121:19-23.

    Google Scholar 

  42. Ristola P, Pyorala K. Determinants of the response to coumarin anticoagulants in patients with acute myocardial infarction. Acta Med Scand 1972;192:183-188.

    Google Scholar 

  43. Ansell J, Hirsh J, Dalen J, et al. Managing oral anticoagulant therapy. Chest 2001;119:22S-38S.

    Google Scholar 

  44. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002;72:702-710.

    Google Scholar 

  45. Margaglione M, Colaizzo D, D'Andrea G, et al. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 2000;84:775-778.

    Google Scholar 

  46. Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997;7:361-367.

    Google Scholar 

  47. Takahashi H, Kashima T, Nomoto S, et al. Comparisons between in-vitro and in-vivo metabolism of (S)-warfarin: Catalytic activities of cDNA-expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics 1998;8:356-373.

    Google Scholar 

  48. Tabrizi AR, Zehnbauer BA, Borecki IB, et al. The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin. J AmColl Surg 2002;194:267-273.

    Google Scholar 

  49. Aithal GP, Day CP, Kesteven PJL, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications.Lancet 1999;353:717-719.

    Google Scholar 

  50. Kaminsky LS, deMorais SM, Faletto MB, et al. Correlation of human cytochrome P4502C substrate specificities with primary structure: Warfarin as a probe. Mol Pharmacol 1993;43:234-239.

    Google Scholar 

  51. Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 1992;267:83-90.

    Google Scholar 

  52. Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms onwarfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment.Blood 2000;96:1816-1819.

    Google Scholar 

  53. Imai J, Ieiri I, Mamiya K, et al. Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: Genetic analysis of the CYP2C9 locus. Pharmacogenetics 2000;10:85-89.

    Google Scholar 

  54. Dickmann LJ, Rettie AE, Kneller MB, et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9?5) expressed among African Americans. Mol Pharmacol 2001;60:382-387.

    Google Scholar 

  55. Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001;11:803-808.

    Google Scholar 

  56. Leung AY, Chow HC, Kwong YL, et al. Genetic polymorphism in exon 4 of cytochrome P450 CYP2C9 may be associated with warfarin sensitivity in Chinese patients. Blood 2001;98:2584-2587.

    Google Scholar 

  57. Rettie AE, Tai G, Veenstra DL, et al. CYP2C9 exon 4 mutations and warfarin dose phenotype in Asians. Blood 2003;101:2896-2897.

    Google Scholar 

  58. Wallace ME, MacSwiney FJ. A major gene controlling warfarin-resistance in the house mouse. J Hyg (Lond) 1976;76:173-181.

    Google Scholar 

  59. Greaves JH, Ayres P. Linkages between genes for coat colour and resistance to warfarin in Rattus norvegicus. Nature 1969;224:284-285.

    Google Scholar 

  60. Kohn MH, Pelz HJ, Wayne RK. Natural selection mapping of the warfarin-resistance gene. Proc Natl Acad Sci USA 2000;97:7911-7915.

    Google Scholar 

  61. Kohn MH, Pelz HJ. A gene-anchored map position of the rat warfarin-resistance locus, Rw, and its orthologs in mice and humans. Blood 2000;96:1996-1998.

    Google Scholar 

  62. Hulse ML.Warfarin resistance: Diagnosis and therapeutic alternatives. Pharmacotherapy 1996;16:1009-1017.

    Google Scholar 

  63. Kohn MH, Pelz HJ, Wayne RK. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) Populations. Genetics 2003;164:1055-1070.

    Google Scholar 

  64. Veenstra DL, Higashi MK, Phillips KA. Assessing the cost-effectiveness of pharmacogenomics. AAPS PharmSci 2000;2:E29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gage, B.F., Eby, C.S. Pharmacogenetics and Anticoagulant Therapy. J Thromb Thrombolysis 16, 73–78 (2003). https://doi.org/10.1023/B:THRO.0000014598.24114.62

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:THRO.0000014598.24114.62

Navigation