Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure

Abstract

Cardiac rupture is a fatal complication of acute myocardial infarction lacking treatment. Here, acute myocardial infarction resulted in rupture in wild-type mice and in mice lacking tissue-type plasminogen activator, urokinase receptor, matrix metalloproteinase stromelysin-1 or metalloelastase. Instead, deficiency of urokinase-type plasminogen activator (u-PA–/–) completely protected against rupture, whereas lack of gelatinase-B partially protected against rupture. However, u-PA–/– mice showed impaired scar formation and infarct revascularization, even after treatment with vascular endothelial growth factor, and died of cardiac failure due to depressed contractility, arrhythmias and ischemia. Temporary administration of PA inhibitor-1 or the matrix metalloproteinase-inhibitor TIMP-1 completely protected wild-type mice against rupture but did not abort infarct healing, thus constituting a new approach to prevent cardiac rupture after acute myocardial infarction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myocardial infarction and cardiac rupture.
Figure 2: Infarct healing.
Figure 3: Impaired myocardial healing and cardiac function in u-PA–/– mice.
Figure 4: Abnormal conduction, repolarization and arrhythmias in infarcted u-PA–/– mice.
Figure 5: Increased ischemia in residual viable u-PA–/– myocardium.

Similar content being viewed by others

References

  1. Reddy, S.G. & Roberts, W.C. Frequency of rupture of the left ventricular free wall or ventricular septum among necropsy cases of fatal acute myocardial infarction since introduction of coronary care units. Am. J. Cardiol. 63, 906–911 (1989).

    Article  CAS  Google Scholar 

  2. Varbella, F. et al. Subacute left ventricular free-wall rupture in early course of acute myocardial infarction. Clinical report of two cases and review of the literature. G. Ital. Cardiol. 29, 163 –170 (1999).

    CAS  PubMed  Google Scholar 

  3. Dalrymple-Hay, M.J., Monro, J.L., Livesey, S.A. & Lamb, R.K. Postinfarction ventricular septal rupture: the Wessex experience. Semin. Thorac. Cardiovasc. Surg. 10, 111– 116 (1998).

    Article  CAS  Google Scholar 

  4. Zahger, D. et al. Left ventricular free wall rupture as the presenting manifestation of acute myocardial infarction in diabetic patients. Am. J. Cardiol. 78, 681–682 ( 1996).

    Article  CAS  Google Scholar 

  5. Peuhkurinen, K., Risteli, L., Jounela, A. & Risteli, J. Changes in interstitial collagen metabolism during acute myocardial infarction treated with streptokinase or tissue plasminogen activator. Am. Heart J. 131, 7–13 (1996).

    Article  CAS  Google Scholar 

  6. Knoepfler, P.S., Bloor, C.M. & Carroll, S.M. Urokinase plasminogen activator activity is increased in the myocardium during coronary artery occlusion. J. Mol. Cell Cardiol. 27, 1317–1324 ( 1995).

    Article  CAS  Google Scholar 

  7. Rohde, L.E. et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99, 3063–3070 (1999).

    Article  CAS  Google Scholar 

  8. Robert, V. et al. Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest. 76, 729–738 (1997).

    CAS  PubMed  Google Scholar 

  9. Tyagi, S.C., Kumar, S., Cassatt, S. & Parker, J.L. Temporal expression of extracellular matrix metalloproteinases and tissue plasminogen activator in the development of collateral vessels in the canine model of coronary occlusion. Can. J. Physiol. Pharmacol. 74, 983– 995 (1996).

    CAS  PubMed  Google Scholar 

  10. Frangogiannis, N.G. et al. Cytokines and the microcirculation in ischemia and reperfusion. J. Mol. Cell Cardiol. 30, 2567– 2576 (1998).

    Article  CAS  Google Scholar 

  11. Carmeliet, P. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genet. 17, 439–444 (1997).

    Article  CAS  Google Scholar 

  12. Carmeliet, P. et al. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 96, 3180– 3191 (1997).

    Article  CAS  Google Scholar 

  13. George, S.J., Johnson, J.L., Angelini, G.D., Newby, A.C. & Baker, A.H. Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum. Gene Ther. 9, 867–877 (1998).

    Article  CAS  Google Scholar 

  14. Alcorn, J.L. et al. Genomic elements involved in transcriptional regulation of the rabbit surfactant protein-A gene. Mol. Endocrinol. 7, 1072–1085 (1993).

    CAS  PubMed  Google Scholar 

  15. Everts, V., van der Zee, E., Creemers, L. & Beertsen, W. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem. J. 28, 229– 245 (1996).

    Article  CAS  Google Scholar 

  16. Nunes, I. et al. Structure and activation of the large latent transforming growth factor-beta complex. Int. J. Obes. Relat. Metab. Disord. 20 Suppl 3, S4–8 ( 1996).

    CAS  PubMed  Google Scholar 

  17. Severs, N.J. Pathophysiology of gap junctions in heart disease. J. Cardiovasc. Electrophysiol. 5, 462–475 (1994).

    Article  CAS  Google Scholar 

  18. Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation, and tumor angiogenesis. Nature 394, 485– 490 (1998).

    Article  CAS  Google Scholar 

  19. Vandeplassche, G., Hermans, C., Thone, F. & Borgers, M. Stunned myocardium has increased mitochondrial NADH oxidase and ATPase activities. Cardioscience 2, 47–53 ( 1991).

    CAS  PubMed  Google Scholar 

  20. Feldhaus, L.M. & Liedtke, A.J. mRNA expression of glycolytic enzymes and glucose transporter proteins in ischemic myocardium with and without reperfusion. J. Mol. Cell Cardiol. 30, 2475–2485 (1998).

    Article  CAS  Google Scholar 

  21. Przyklenk, K., Connelly, C.M., McLaughlin, R.J., Kloner, R.A. & Apstein, C.S. Effect of myocyte necrosis on strength, strain, and stiffness of isolated myocardial strips. Am. Heart J. 114, 1349–1359 (1987).

    Article  CAS  Google Scholar 

  22. Schaffer, C.J. & Nanney, L.B. Cell biology of wound healing. Int. Rev. Cytol. 169, 151–181 (1996).

    Article  CAS  Google Scholar 

  23. Koyama, H., Raines, E.W., Bornfeldt, K.E., Roberts, J.M. & Ross, R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87, 1069–1078 ( 1996).

    Article  CAS  Google Scholar 

  24. Plesner, T., Behrendt, N. & Ploug, M. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR. Stem Cells 15, 398–408 ( 1997).

    Article  CAS  Google Scholar 

  25. Kleiner, D.E. & Stetler-Stevenson, W.G. Matrix metalloproteinases and metastasis. Cancer Chemother. Pharmacol. 43, S42–51 (1999).

    Article  CAS  Google Scholar 

  26. Chapman, H.A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Cur. Opin. Cell Biol. 9, 714–724 (1997).

    Article  CAS  Google Scholar 

  27. Carmeliet, P. et al. Receptor-independent role of urokinase-type plasminogen activator in arterial wound healing and intima formation in mice. J. Cell Biol. 140, 233–245 ( 1998).

    Article  CAS  Google Scholar 

  28. Rifkin, D.B., Mazzieri, R., Munger, J.S., Noguera, I. & Sung, J. Proteolytic control of growth factor availability. APMIS 107, 80– 85 (1999).

    Article  CAS  Google Scholar 

  29. Borregaard, N. & Cowland, J.B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).

    CAS  PubMed  Google Scholar 

  30. Lee, J.K. et al. A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nature Med. 4, 1383–1391 (1998).

    Article  CAS  Google Scholar 

  31. Zhang, B. et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99, 1788–1794 ( 1999).

    Article  CAS  Google Scholar 

  32. Lijnen, H.R. & Collen, D. Congenital and acquired deficiencies of components of the fibrinolytic system and their relation to bleeding and thrombosis. Fibrinolysis 3, 67– 77 (1989).

    Article  CAS  Google Scholar 

  33. Hamsten, A. et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2, 3–9 (1987).

    Article  CAS  Google Scholar 

  34. Henry, M. et al. Metabolic determinants are much more important than genetic polymorphisms in determining the PAI-1 activity and antigen plasma concentrations: a family study with part of the Stanislas cohort. Arterioscler. Thromb. Vasc. Biol. 18, 84–91 (1998).

    Article  CAS  Google Scholar 

  35. Carmeliet, P. & Collen, D. Vascular development and disorders: molecular analysis and pathogenetic insights. Kidney Int. 53, 1519–1549 (1998).

    Article  CAS  Google Scholar 

  36. Carmeliet, P. & Collen, D. Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase, and coagulation system. Thromb. Res. 91, 255–285 (1998).

    Article  CAS  Google Scholar 

  37. Lutgens, E. et al. Chronic myocardial infarction in mice: cardiac structural and functional changes. Cardiovasc. Res. 41, 586–593 (1999).

    Article  CAS  Google Scholar 

  38. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495– 502 (1999).

    Article  CAS  Google Scholar 

  39. Linton, M.F., Atkinson, J.B. & Fazio, S. Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267, 1034–1037 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J.M. Herbert and F. Bono for measurements of TGFβ-1; I. Van Horebeek for help with ATP and lactate measurements; R. Gerard for the AdRR5 and AdPAI-1 adenovirus, M. Van Bilzen, P. Doevedans and M. Palmen; and A. Bouché, M. De Mol, I. Cornelissen, B. Hermans, K. Deroover, A. Manderveld, S. Jansen, A. Vandenhoeck, P. Van Wesemael, S. Wyns and F. Thoné. S.H. is a Fund for Scientific Research. research assistant; G.T. is a recipient of the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carmeliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heymans, S., Luttun, A., Nuyens, D. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure . Nat Med 5, 1135–1142 (1999). https://doi.org/10.1038/13459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing