Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

K+ is an endothelium-derived hyperpolarizing factor in rat arteries

Abstract

In arteries, muscarinic agonists such as acetylcholine release an unidentified, endothelium-derived hyperpolarizing factor (EDHF) which is neither prostacyclin nor nitric oxide1,2,3. Here we show that EDHF-induced hyperpolarization of smooth muscle and relaxation of small resistance arteries are inhibited by ouabain plus Ba2+; ouabain is a blocker of Na+/K+ ATPase4 and Ba2+ blocks inwardly rectifying K+ channels5. Small increases in the amount of extracellular K+ mimic these effects of EDHF in a ouabain- and Ba2+-sensitive, but endothelium-independent, manner. Acetylcholine hyperpolarizes endothelial cells and increases the K+ concentration in the myoendothelial space; these effects are abolished by charbdotoxin plus apamin. Hyperpolarization of smooth muscle by EDHF is also abolished by this toxin combination, but these toxins do not affect the hyperpolarizaiton of smooth muscle by added K+. These data show that EDHF is K+ that effluxes through charybdotoxin- and apamin-sensitive K+ channels on endothelial cells. The resulting increase in myoendothelial K+ concentration hyperpolarizes and relaxes adjacent smooth-muscle cells by activating Ba2+-sensitive K+ channels and Na+/K+ ATPase. These results show that fluctuations in K+ levels originating within the blood vessel itself are important in regulating mammalian blood pressure and flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Profiles of EDHF- and K+-induced hyperpolarizations in hepatic artery.
Figure 2: Determination of the myoendothelial K+ concentration in endothelium-intact hepatic arteries using a K+-sensitive microelectrode.
Figure 3: Comparison of EDHF- and K+-induced relaxations and identification of inwardly rectifying K+ currents (I K(IR)) in hepatic artery.
Figure 4: Comparison of the effects of EDHF and K+ in small mesenteric arteries with an intact endothelium (+E).

Similar content being viewed by others

References

  1. Bolton, T. B., Lang, R. J. & Takewaki, T. Mechanism of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J. Physiol. 351, 549–572 (1984).

    Article  CAS  Google Scholar 

  2. Garland, C. J., Plane, F., Kemp, BK. & Cocks, T. A. Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol. Sci. 16, 23–30 (1995).

    Article  CAS  Google Scholar 

  3. Edwards, G. & Weston, A. H. Endothelium-derived hyperpolarizing factor—a critical appraisal. Prog. Drug Res. 50, 107–133 (1998).

    Article  CAS  Google Scholar 

  4. Félétou, M. & Vanhoutte, P. M. Endothelium-derived hyperpolarization of canine coronary smooth muscle. Br. J. Pharmacol. 93, 515–524 (1988).

    Article  Google Scholar 

  5. Edwards, F. R. & Hirst, G. D. S. Inward rectification in submucosal arterioles of guinea-pig ileum. J. Physiol. 404, 437–454 (1988).

    Article  CAS  Google Scholar 

  6. Waldron, G. J. & Garland, C. J. Effect of potassium channel blockers on L-NAME insensitive relaxations in rat small mesenteric artery. Can. J. Physiol. Pharmacol. 72 (Suppl. 1), 11 (1994).

    Google Scholar 

  7. Zygmunt, P. M. & Högestätt, E. D. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Br. J. Pharmacol. 117, 1600–1606 (1996).

    Article  CAS  Google Scholar 

  8. Marchenko, S. M. & Sage, S. O. Calcium-activated potassium channels in the endothelium of intact rat aorta. J. Physiol. 492, 53–60 (1996).

    Article  CAS  Google Scholar 

  9. Hoeffner, U., Félétou, M., Flavahan, N. A. & Vanhoutte, P. M. Canine arteries release two different endothelium-derived relaxing factors. Am. J. Physiol. 257, H330–H333 (1989).

    CAS  PubMed  Google Scholar 

  10. Gordon, J. L. & Martin, W. Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells. Br. J. Pharmacol. 79, 531–541 (1983).

    Article  CAS  Google Scholar 

  11. Knot, H. J., Zimmermann, P. A. & Nelson, M. T. Extracellular K+-induced hyperpolarizations and dilations of rat coronary and cerebral arteries involve inward rectifier channels. J. Physiol. 492, 419–430 (1996).

    Article  CAS  Google Scholar 

  12. Newby, A. C. & Henderson, A. H. Stimulus-secretion coupling in vascular endothelial cells. Annu. Rev. Physiol. 52, 661–674 (1990).

    Article  CAS  Google Scholar 

  13. Garcia, M. L., Knaus, H. G., Munujos, P., Slaughter, R. S. & Kaczorowski, G. J. Charybdotoxin and its effects on potassium channels. Am. J. Physiol. 38, C1–C10 (1995).

    Article  Google Scholar 

  14. Prior, H. M., Webster, N., Quinn, K., Beech, D. J. & Yates, M. S. K+-induced dilation of a small renal artery: no role for inward rectifier K+ channels. Cardiovasc. Res. 37, 780–790 (1998).

    Article  CAS  Google Scholar 

  15. Wellman, G. C., Quayle, J. M. & Standen, N. B. Evidence against the association of the sulphonylurea receptor with endogenous Kir family members other than KATPin coronary vascular smooth muscle. Pflugers Arch. 432, 355–357 (1996).

    Article  CAS  Google Scholar 

  16. Feelisch, M. & Noack, E. Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur. J. Pharmacol. 142, 465–469 (1987).

    Article  CAS  Google Scholar 

  17. Edwards, G. & Weston, A. H. Recent advances in potassium channel modulation. Prog. Drug Res. 49, 93–121 (1997).

    CAS  PubMed  Google Scholar 

  18. Garland, C. J. & McPherson, G. A. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation of acetylcholine in the rat small mesenteric artery. Br. J. Pharmacol. 105, 429–435 (1992).

    Article  CAS  Google Scholar 

  19. McCarron, J. G. & Halpern, W. Potassium dilates rat cerebral arteries by two independent mechanisms. Am. J. Physiol. 259, H902–H908 (1990).

    CAS  PubMed  Google Scholar 

  20. Chaytor, A. T., Evans, W. H. & Griffith, T. M. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. J. Physiol. 508, 561–573 (1998).

    Article  CAS  Google Scholar 

  21. Dora, K. A., Doyle, M. P. & Duling, B. R. Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc. Natl Acad. Sci. USA 94, 6529–6534 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Campbell, W. B., Gebremedhin, D., Pratt, P. F. & Harder, D. R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res. 78, 415–423 (1996).

    Article  CAS  Google Scholar 

  23. Popp, R., Bauersachs, J., Hecker, M., Fleming, I. & Busse, R. Atransferable, β-naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells. J. Physiol. 497, 699–709 (1996).

    Article  CAS  Google Scholar 

  24. Chataigneau, T., Félétou, M., Duhault, J. & Vanhoutte, P. M. Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarization in the guinea-pig carotid artery. Br. J. Pharmacol. 123, 574–580 (1998).

    Article  CAS  Google Scholar 

  25. Bolotina, V., Najibi, S., Palacino, J. J., Pagano, P. J. & Cohen, R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368, 850–853 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Kuschinsky, W., Wahl, M., Bosse, O. & Thurau, K. Perivascular potassium and pH as determinants of local pial arterial diameter in cats. Circ. Res. 31, 240–247 (1972).

    Article  CAS  Google Scholar 

  27. Buenger, R., Haddy, F. J., Querengasser, A. & Eckehart, G. Studies on potassium induced coronary dilation in the isolated guinea pig heart. Pflugers Arch. 363, 27–31 (1976).

    Article  CAS  Google Scholar 

  28. Paterson, D. J. Role of potassium in the regulation of systemic physiological function during exercise. Acta Physiol. Scand. 156, 287–294 (1996).

    Article  CAS  Google Scholar 

  29. Zygmunt, P. et al. Studies on the effects of anandamide in rat hepatic artery. Br. J. Pharmacol. 122, 1679–1686 (1997).

    Article  CAS  Google Scholar 

  30. Danker, T., Gaßner, B., Oberleithner, H. & Schwab, A. Extracellular detection of K+ release during migration of transformed Madin-Darby canine kidney cells. Pflugers Arch. 433, 71–76 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Beech, J.-L. Bény, M. Félétou, S. Greenwood, N. Standen, A. Wareham and A. Schwab for advice. This work was supported by the British Heart Foundation, the MRC and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Weston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, G., Dora, K., Gardener, M. et al. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396, 269–272 (1998). https://doi.org/10.1038/24388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24388

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing