Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

EDRF coordinates the behaviour of vascular resistance vessels

Abstract

Constriction of vascular smooth muscle in response to the stimulus of raised intravascular pressure—the myogenic response1,2— represents a positive feedback mechanism which, if unopposed, could theoretically lead to instability in the intact circulation3,4. Dilation in response to increased intraluminal flow would provide an opposing feedback mechanism which could confer overall stability4. Flow-dependent dilation in conduit vessels5–7 is mediated by endothelium-derived relaxing factor (EDRF)8–14, but the relationship between flow and EDRF activity has not been studied in resistance vessels in situ. We here demonstrate that EDRF can coordinate the aggregate hydrodynamic properties of an intact network. Under control conditions, EDRF maintains a fourth-power relationship between diameter and flow so that the pressure gradient in each vessel asymptotically approaches a constant value at high flow rates. Basal EDRF release may also maintain a similar spatial distribution of flow at different flow rates, even under conditions of moderate pharmacological constriction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bayliss, W. M. J. Physiol., Lond. 28, 220–231 (1902).

    Article  CAS  Google Scholar 

  2. Johnson, P. C. in Handbook of Physiology Vol II Vascular Smooth Muscle (eds Bohr, D. F., Somlyo, A. P. & Sparks, H. S.) 409–442 (Am. Physiol. Soc., Bethesda, Maryland, 1980).

    Google Scholar 

  3. Folkow, B. Circ. Res. 15, Suppl. 1, 279–287 (1964).

    Google Scholar 

  4. Guyton, A. C., cited in Koch A. R. Circ. Res. 15, Suppl. 1, 269–279 (1964).

    Google Scholar 

  5. Schretzenmayr, A. Pflüeger's Arch. ges. Physiol. 232, 743–748 (1933).

    Article  Google Scholar 

  6. Hilton, S. M. J. Physiol., Lond. 149, 93–111 (1959).

    Article  CAS  Google Scholar 

  7. Gerova, M. et al. Basic Res. Cardiol. 76, 503–507 (1981).

    Article  CAS  Google Scholar 

  8. Smiesko, V., Kozik, J. & Dolezel, S. Blood Vessels 22, 247–251 (1985).

    CAS  PubMed  Google Scholar 

  9. Holtz, J., Giesler, M. & Bassenge, E. Z. Kardiol. 72, Suppl. 3, 98–106 (1983).

    CAS  PubMed  Google Scholar 

  10. Holtz, J., Forstermann, U., Pohl, U., Giesler, M. & Bassenge, E. J. Cardiovasc. Pharmac. 6, 1161–1169 (1984).

    Article  CAS  Google Scholar 

  11. Rubanyi, G. M., Romero, J. C. & Vanhoutte, P. M. Am. J. Physiol. 250, H1145–H1149 (1986).

    Article  CAS  Google Scholar 

  12. Pohl, U., Busse, R., Kuon, E. & Bassenge, E. J. appl. Cardiol. 1, 215–235 (1986).

    CAS  Google Scholar 

  13. Kaiser, L., Hull, S. S. & Sparks, H. V. Am. J. Physiol. 250, H974–H981 (1986).

    CAS  PubMed  Google Scholar 

  14. Khayutin, V. M. et al. Acta physiol. Hungarica 68, 241–251 (1986).

    CAS  Google Scholar 

  15. Furchgott, R. F. Circ. Res. 53, 557–573 (1983).

    Article  CAS  Google Scholar 

  16. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C. & Henderson A. H. Nature 308, 645–647 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Griffith, T. M., Henderson, A. H., Hughes Edwards, D. & Lewis, M. J. J. Physiol., Lond. 351, 13–24 (1984).

    Article  CAS  Google Scholar 

  18. Martin, W., Furchgott, R., Villani, G. M. & Jothianandan, D. J. Pharm. exp. Ther. 237, 529–538 (1986).

    CAS  Google Scholar 

  19. Collins, P. Chappell, S. P., Griffith, T. M., Lewis, M. J. & Henderson, A. H. J. Cardiovasc. Pharmac. 8, 1158–1162 (1986).

    Article  CAS  Google Scholar 

  20. Davies, R. Ll., Flores, N. A. & Evans, K. T. Br. J. Radiol. 59, 273–276 (1986).

    Article  CAS  Google Scholar 

  21. Palmer, R. M. J., Ferrige, A. G. & Moncada, S. Nature. 327, 524–526 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Gibson, Q. H. & Roughton, F. J. W. J. Physiol., Lond. 136, 507–526 (1957).

    Article  CAS  Google Scholar 

  23. Martin, W., Villani, G. M., Jothianandan, D. & Furchgott, R. F. J. Pharm. exp. Ther. 232, 708–716 (1985).

    CAS  Google Scholar 

  24. Edwards, D. H., Griffith, T. M., Ryley, H. C. & Henderson, A. H. Cardiovasc. Res. 20, 549–556 (1986).

    Article  CAS  Google Scholar 

  25. Zweifach, B. W. Circ. Res. 41, 380–390 (1977).

    Article  CAS  Google Scholar 

  26. Mayrovitz, H. N. & Roy, J. Am. J. Physiol. 245, H1031–H1038 (1983).

    CAS  PubMed  Google Scholar 

  27. Colquhoun, D. in Lectures on Biostatistics 259–272 (Clarendon Press, Oxford, 1971).

    MATH  Google Scholar 

  28. Gore, R. W. Am. J. Physiol. 222, 82–91 (1972).

    CAS  PubMed  Google Scholar 

  29. Popel, A. S. J. appl. Mech. 47, 247–253 (1980).

    Article  CAS  Google Scholar 

  30. Gore, R. W. Circ. Res. 34, 581–591 (1974).

    Article  ADS  CAS  Google Scholar 

  31. Zweifach, B. W. Circ. Res. 34, 843–857 (1974).

    CAS  PubMed  Google Scholar 

  32. Schmid-Shönbein, H., Fischer, T., Driessen, G. & Rieger, H. in Quantatative Cardiovascular Studies (eds Hwang, N H C, Gross, D. R. & Patel, D. J) 353–417 (University Park Press, Baltimore, 1979).

    Google Scholar 

  33. Murray, C. D. Proc. natn. Acad. Sci. U.S.A. 12, 207–214 (1926).

    Article  ADS  CAS  Google Scholar 

  34. Kamiya, A. & Togawa, T. Am. J. Physiol. 239, H14–H21 (1980).

    CAS  PubMed  Google Scholar 

  35. Colquhoun, D. in Lectures on Biostatistics 200–204 (Clarendon Press, Oxford, 1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, T., Edwards, D., Davies, R. et al. EDRF coordinates the behaviour of vascular resistance vessels. Nature 329, 442–445 (1987). https://doi.org/10.1038/329442a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329442a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing