Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy

Abstract

Enteroviruses such as Coxsackievirus B3 can cause dilated cardiomyopathy, but the mechanism of this pathology is unknown. Mutations in cytoskeletal proteins such as dystrophin cause hereditary dilated cardiomyopathy, but it is unclear if similar mechanisms underlie acquired forms of heart failure. We demonstrate here that purified Coxsackievirus protease 2A cleaves dystrophin in vitro as predicted by computer analysis. Dystrophin is also cleaved during Coxsackievirus infection of cultured myocytes and in infected mouse hearts, leading to impaired dystrophin function. In vivo, dystrophin and the dystrophin-associated glycoproteins α-sarcoglycan and β-dystroglycan are morphologically disrupted in infected myocytes. We suggest a molecular mechanism through which enteroviral infection contributes to the pathogenesis of acquired forms of dilated cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cleavage of dystrophin by Coxsackievirus protease 2A.
Figure 2: Dystrophin and eIF4G-1 are cleaved during Coxsackievirus B3 infection of cultured myocytes.
Figure 3: Dystrophin is cleaved during Coxsackievirus B3 infection in vivo in SCID and immunocompetent mice.
Figure 4: The sarcolemmal integrity is impaired and dystrophin, α-sarcoglycan and β-dystroglycan staining is disrupted in infected myocytes from SCID mice.
Figure 5: A model for the role of dystrophin in Coxsackievirus-induced dilated cardiomyopathy.

Similar content being viewed by others

References

  1. Schocken, D.D., Arrieta, M.I., Leaverton, P.E. & Ross, E. A. Prevalence and mortality rate of congestive heart failure in the United States. J. Am. Coll. Cardiol. 20, 301– 306 (1992).

    Article  CAS  Google Scholar 

  2. Cohn, J.N. et al. Report of the National Heart, Lung, and Blood Institute Special Emphasis Panel on Heart Failure Research. Circulation 95, 766–770 (1997).

    Article  CAS  Google Scholar 

  3. Dargie, H.J., McMurray, J.J. & McDonagh, T.A. Heart failure—implications of the true size of the problem. J. Intern. Med. 239, 309 –315 (1996).

    Article  CAS  Google Scholar 

  4. Baboonian, C., Davies, M.J., Booth, J.C. & McKenna, W.J. Coxsackie B viruses and human heart disease. Curr. Top. Microbiol. Immunol. 223, 31–52 ( 1997).

    CAS  PubMed  Google Scholar 

  5. Sole, M.J. & Liu, P. Viral myocarditis: a paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy. J. Am. Coll. Cardiol. 22, 99A–105A (1993).

    Article  CAS  Google Scholar 

  6. Leiden, J.M. The genetics of dilated cardiomyopathy–emerging clues to the puzzle. N. Engl. J. Med. 337, 1080– 1081 (1997).

    Article  CAS  Google Scholar 

  7. Towbin, J.A. The role of cytoskeletal proteins in cardiomyopathies. Curr. Opin. Cell Biol. 10, 131–139 ( 1998).

    Article  CAS  Google Scholar 

  8. Malhotra, S. B. et al. Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy. Science 242, 755– 759 (1988).

    Article  CAS  Google Scholar 

  9. Beggs, A.H. Dystrophinopathy, the expanding phenotype. Dystrophin abnormalities in X-linked dilated cardiomyopathy. Circulation 95, 2344–2347 (1997).

    Article  CAS  Google Scholar 

  10. Berko, B.A. & Swift, M. X-linked dilated cardiomyopathy. N. Engl. J. Med. 316, 1186–91 (1987).

    Article  CAS  Google Scholar 

  11. Towbi, J.A. et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy locus. Circulation 87, 1854–1865 ( 1993).

    Article  Google Scholar 

  12. Muntoni, F. et al. Brief report: Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med. 329, 921–5 ( 1993).

    Article  CAS  Google Scholar 

  13. Olson, T.M., Michels, V.V., Thibodeau, S.N., Tai, Y. S. & Keating, M.T. Actin mutations in dilated cardiomyopathy, an inheritable form of heart failure. Science 280, 750–752 (1998).

    Article  CAS  Google Scholar 

  14. Maeda, M., Holder, E., Lowes, B., Valent, S. & Bies, R.D. Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation 95, 17–20 (1997).

    Article  CAS  Google Scholar 

  15. Fadic, R. et al. Brief report: deficiency of a dystrophin-associated glycoprotein (adhalin) in a patient with muscular dystrophy and cardiomyopathy. N. Engl. J. Med. 334, 362–6 (1996).

    Article  CAS  Google Scholar 

  16. Nigro, V. et al. Identification of the Syrian hamster cardiomyopathy gene. Hum. Mol. Genet. 6, 601– 607 (1997).

    Article  CAS  Google Scholar 

  17. Grady, R.M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738 (1997).

    Article  CAS  Google Scholar 

  18. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  Google Scholar 

  19. Wessely, R., Henke, A., Zell, R., Kandolf, R. & Knowlton, K.U. Low level expression of a mutant coxsackieviral cDNA induces a myocytopathic effect in culture: An approach to the study of enteroviral persistence in cardiac myocytes. Circulation 98, 450–457 (1998).

    Article  CAS  Google Scholar 

  20. Wessely, R. et al. Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J. Clin. Invest. 102, 1444–1453 (1998).

    Article  CAS  Google Scholar 

  21. Rueckert, R. R. in Fundamental Virology Vol. 3 (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 477–522 (Raven, New York, 1996).

    Google Scholar 

  22. Gradi, A. et al. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell Biol. 18, 334– 342 (1998).

    Article  CAS  Google Scholar 

  23. Lamphear, B.J. et al. Mapping of the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human Coxsackievirus and rhinovirus. J. Biol. Chem. 268, 19200– 19203 (1993).

    CAS  PubMed  Google Scholar 

  24. Blom, N., Hansen, J., Blaas, D. & Brunak, S. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci. 5, 2203–2216 (1996).

    Article  CAS  Google Scholar 

  25. Sheng, Z. et al. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J. Biol. Chem. 272, 5783–5791 ( 1997).

    Article  CAS  Google Scholar 

  26. Setoguchi, M. et al. Expression and localization of dystrophin in cultured neonatal rat cardiac myocytes. Biochem. Biophys. Res. Commun. 194, 1012–1018 (1993).

    Article  CAS  Google Scholar 

  27. Ervasti, J.M., Kahl, S.D. & Campbell, K.P. Purification of dystrophin from skeletal muscle. J. Biol. Chem. 266, 9161–9165 (1991).

    CAS  PubMed  Google Scholar 

  28. Chow, L.H., Beisel, K.W. & McManus, B.M. Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury. Lab. Invest. 66, 24–31 (1992).

    CAS  PubMed  Google Scholar 

  29. Henke, A., Huber, S., Stelzner, A. & Whitton, J.L. The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J. Virol. 69, 6720–6728 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Straub, V., Rafael, J.A., Chamberlain, J.S. & Campbell, K.P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375– 385 (1997).

    Article  CAS  Google Scholar 

  31. Ervasti, J.M., Ohlendieck, K., Kahl, S.D., Gaver, M. G. & Campbell, K.P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315–9 ( 1990).

    Article  CAS  Google Scholar 

  32. Straub, V. & Campbell, K.P. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr. Opin. Neurol. 10, 168–175 (1997).

    Article  CAS  Google Scholar 

  33. Rybakova, I.N. & Ervasti, J.M. Dystrophin-glycoprotein complex is monomeric and stabilizes actin filaments in vitro through a lateral association. J. Biol. Chem. 272, 28771–28778 (1997).

    Article  CAS  Google Scholar 

  34. Roberts, R.G. & Bobrow, M. Dystrophins in vertebrates and invertebrates. Hum. Mol. Genet. 7, 589– 595 (1998).

    Article  CAS  Google Scholar 

  35. Koenig, M. & Kunkel, L.M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J. Biol. Chem. 265, 4560– 4566 (1990).

    CAS  PubMed  Google Scholar 

  36. Chen, P.H., Ornelles, D.A. & Shenk, T. The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J. Virol. 67, 3507 –3514 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shoeman, R.L. et al. Cleavage of human and mouse cytoskeletal and sarcomeric proteins by human immunodeficiency virus type 1 protease. Actin, desmin, myosin, and tropomyosin. Am. J. Pathol. 142, 221– 230 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Knowlton, K.U., Jeon, E.S., Berkley, N., Wessely, R. & Huber, S. A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of CVB3. J. Virol. 70 (11), 7811– 7818 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwimmbeck, P.L., Badorff, C., Schultheiss, H.P. & Strauer, B.E. Transfer of human myocarditis into severe combined immunodeficiency mice. Circ. Res. 75, 156–164 (1994).

    Article  CAS  Google Scholar 

  40. Bader, D., Masaki, T. & Fischman, D.A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95, 763–770 ( 1982).

    Article  CAS  Google Scholar 

  41. Nicholson, L.V. et al. Dystrophin in skeletal muscle. I. Western blot analysis using a monoclonal antibody. J. Neurol. Sci. 94, 125–136 (1989).

    Article  CAS  Google Scholar 

  42. Morris, G.E. et al. An epitope structure for the C-terminal domain of dystrophin and utrophin. Biochemistry 37, 11117– 11127 (1998).

    Article  CAS  Google Scholar 

  43. Spencer, M.J., Walsh, C.M., Dorshkind, K.A., Rodriguez, E.M. & Tidball, J.G. Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J. Clin. Invest. 99, 2745–2751 ( 1997).

    Article  CAS  Google Scholar 

  44. Sommergruber, W. et al. Mutational analyses support a model for the HRV2 2A proteinase. Virology 234, 203–214 (1997).

    Article  CAS  Google Scholar 

  45. Schwarz, E.M. et al. NF-kappaB-mediated inhibition of apoptosis is required for encephalomyocarditis virus virulence: a mechanism of resistance in p50 knockout mice. J. Virol. 72, 5654– 5660 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Antibody MF20, developed by D.A. Fishman and colleagues, was obtained from the Developmental Studies Hybridoma Bank maintained by the University of Iowa Department of Biological Sciences (Iowa City, Iowa 52242, USA) under contract NO1-HD-7-3263 from the NICHD. Suang Huang provided assistance with the adenovirus experiments. This work was supported by grant Ba 1668/1-1 from the Deutsche Forschungsgemeinschaft to C.B.; grants from the American Heart Association (96-306A) and UCSD Biotechnology Star Project (S96-38) to K.U.K.; and grant GM20818 from the NIH to R.E.R. K.P.C. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk U. Knowlton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badorff, C., Lee, GH., Lamphear, B. et al. Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5, 320–326 (1999). https://doi.org/10.1038/6543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing