Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair

Abstract

Heart disease is a leading cause of death in newborn children and in adults. Efforts to promote cardiac repair through the use of stem cells hold promise but typically involve isolation and introduction of progenitor cells. Here, we show that the G-actin sequestering peptide thymosin β4 promotes myocardial and endothelial cell migration in the embryonic heart and retains this property in postnatal cardiomyocytes. Survival of embryonic and postnatal cardiomyocytes in culture was also enhanced by thymosin β4. We found that thymosin β4 formed a functional complex with PINCH and integrin-linked kinase (ILK), resulting in activation of the survival kinase Akt (also known as protein kinase B). After coronary artery ligation in mice, thymosin β4 treatment resulted in upregulation of ILK and Akt activity in the heart, enhanced early myocyte survival and improved cardiac function. These findings suggest that thymosin β4 promotes cardiomyocyte migration, survival and repair and the pathway it regulates may be a new therapeutic target in the setting of acute myocardial damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thymosin β4 is expressed in specific cardiac cell types during development.
Figure 2: Thymosin β4 is secreted and promotes cardiac cell migration and survival.
Figure 3: Thymosin β4 forms a functional complex with PINCH and ILK resulting in phosphorylation of Akt.
Figure 4: Thymosin β4 treatment after coronary ligation improves myocardial function in vivo.
Figure 5: Thymosin β4 promotes survival and alters scar formation after coronary artery ligation in mice.

Similar content being viewed by others

References

  1. American Heart Association, Heart Disease and Stroke Statistics—2004 update 11–14 (American Heart Association, Dallas, Texas, 2004)

    Google Scholar 

  2. Hoffman, J. I. E. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002)

    Article  Google Scholar 

  3. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003)

    Article  CAS  Google Scholar 

  5. Anversa, P. & Nadal-Ginard, B. Myocyte renewal and ventricular remodelling. Nature 415, 240–243 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Balsam, L. B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Srivastava, D. & Olson, E. N. A genetic blueprint for cardiac development: Implications for human heart disease. Nature 407, 221–226 (2000)

    Article  CAS  Google Scholar 

  9. Safer, D., Elzinga, M. & Nachmias, V. T. Thymosin β4 and Fx, an actin-sequestering peptide, are indistinguishable. J. Biol. Chem. 266, 4029–4032 (1991)

    CAS  PubMed  Google Scholar 

  10. Huff, T., Muller, C. S., Otto, A. M., Netzker, R. & Hannappel, E. Beta-Thymosins, small acidic peptides with multiple functions. Int. J. Biochem. Cell Biol. 33, 205–220 (2001)

    Article  CAS  Google Scholar 

  11. Sun, H. Q., Kwiatkowska, K. & Yin, H. L. β-Thymosins are not simple actin monomer buffering proteins. Insights from overexpression studies. J. Biol. Chem. 271, 9223–9230 (1996)

    Article  CAS  Google Scholar 

  12. Hertzog, M. et al. The β-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell 117, 611–623 (2004)

    Article  CAS  Google Scholar 

  13. Marinissen, M. J. et al. Small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol. Cell 14, 29–41 (2004)

    Article  CAS  Google Scholar 

  14. Olave, I. A., Reck-Peterson, S. L. & Crabtree, G. R. Nuclear actin and actin-related protein in chromatin remodeling. Annu. Rev. Biochem. 71, 755–781 (2002)

    Article  CAS  Google Scholar 

  15. Malinda, K. M. et al. Thymosin β4 accelerates wound healing. J. Invest. Dermatol. 113, 364–368 (1999)

    Article  CAS  Google Scholar 

  16. Sosne, G. et al. Thymosin β4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp. Eye Res. 74, 293–299 (2002)

    Article  CAS  Google Scholar 

  17. Grant, D. S. et al. Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3, 125–135 (1999)

    Article  CAS  Google Scholar 

  18. Fukuda, T., Chen, K., Shi, X. & Wu, C. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J. Biol. Chem. 278, 51324–51333 (2003)

    Article  CAS  Google Scholar 

  19. Troussard, A. A. et al. Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J. Biol. Chem. 278, 22374–22378 (2003)

    Article  CAS  Google Scholar 

  20. Lin, S. C. & Morrison-Bogorad, M. Developmental expression of mRNAs encoding TB4 and TB10 in rat brain and other tissues. J. Mol. Neurosci. 2, 35–44 (1990)

    Article  CAS  Google Scholar 

  21. Gomez-Marquez, J., Franco del Amo, F., Carpintero, P. & Anadon, R. High levels of mouse thymosin β4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim. Biophys. Acta 1306, 187–193 (1996)

    Article  Google Scholar 

  22. Van den Hoff, M. J. et al. Myocardialization of the cardiac outflow tract. Dev. Biol. 212, 477–490 (1999)

    Article  CAS  Google Scholar 

  23. Kelly, R. G. & Buckingham, M. E. The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet. 18, 210–216 (2002)

    Article  CAS  Google Scholar 

  24. Frohm, M. et al. Biochemical and antibacterial analysis of human wound and blister fluid. Eur. J. Biochem. 237, 86–92 (1996)

    Article  CAS  Google Scholar 

  25. Huang, W. Q. & Wang, Q. R. Bone marrow endothelial cells secrete thymosin β4 and AcSDKP. Exp. Hematol. 29, 12–18 (2001)

    Article  CAS  Google Scholar 

  26. Runyan, R. B. & Markwald, R. R. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev. Biol. 95, 108–114 (1983)

    Article  CAS  Google Scholar 

  27. Zhang, Y. et al. Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. J. Cell Sci. 115, 4777–4786 (2002)

    Article  CAS  Google Scholar 

  28. Brazil, D. P., Park, J. & Hemmings, B. A. PKB binding proteins. Getting in on the Akt. Cell 111, 293–303 (2002)

    Article  CAS  Google Scholar 

  29. Arai, A., Spencer, J. A. & Olson, E. N. STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J. Biol. Chem. 277, 24453–24459 (2002)

    Article  CAS  Google Scholar 

  30. Delcommenne, M. et al. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl Acad. Sci. USA 95, 11211–11216 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Mangi, A. A. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Med. 9, 1195–1201 (2003)

    Article  CAS  Google Scholar 

  32. Philp, D. et al. Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Rep. Reg. 11, 19–24 (2003)

    Article  Google Scholar 

  33. Depre, C. et al. Program of cell survival underlying human and experimental hibernating myocardium. Circ Res. 95, 433–440 (2004)

    Article  CAS  Google Scholar 

  34. Yamagishi, H. et al. Tbx1 is regulated by tissue-specific forkhead proteins through a common sonic hedgehog-responsive enhancer. Genes Dev. 17, 269–281 (2003)

    Article  CAS  Google Scholar 

  35. Yu, F. X., Lin, S. C., Morrison-Bogorad, M., Atkinson, M. A. & Yin, H. L. Thymosin beta 10 and thymosin beta 4 are both actin monomer sequestering proteins. J. Biol. Chem. 268, 502–509 (1993)

    CAS  PubMed  Google Scholar 

  36. Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447 (2003)

    Article  ADS  CAS  Google Scholar 

  37. Garner, L. B. et al. Macrophage migration inhibitory factor is a cardiac-derived myocardial depressant factor. Am. J. Physiol. Heart Circ. Physiol. 285, 500–509 (2003)

    Article  Google Scholar 

  38. Mora, C. A., Baumann, C. A., Paino, J. E., Goldstein, A. L. & Badamchian, M. Biodistribution of synthetic thymosin β4 in the serum, urine, and major organs of mice. Int. J. Immunopharmacol. 19, 1–8 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. L. Goldstein for his advice and RegeneRx Biopharmaceuticals Inc. for providing the synthetic thymosin β4 protein; J. Richardson and the histopathology core for histological support; G. A. Adams for technical asssistance; E. N. Olson and members of the Srivastava laboratory for discussions and critical review; and S. Johnson and J. E. Marquette for graphical help and suggestions. D.S. was supported by grants from the NHLBI/NIH, March of Dimes Birth Defects Foundation, American Heart Association and Donald W. Reynolds Clinical Cardiovascular Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Srivastava.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Movie 1

Rare beating foci in cells migrating from cardiac explants. (MP4 744 kb)

Supplementary Movie 2

Frequent beating foci in cells migrating from cardiac explants after thymosin β4 treatment. (MP4 429 kb)

Supplementary Methods

Additional methods used in the experiments, including: embryonic T7 phage display cDNA library; T7 phage biopanning; and ELISA confirmation assay. (DOC 21 kb)

Supplementary Movie Legends

Legends to accompany the Supplementary Movies (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock-Marquette, I., Saxena, A., White, M. et al. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466–472 (2004). https://doi.org/10.1038/nature03000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing