Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes

Abstract

Stretching of cardiac muscle modulates contraction through the enhancement of the Ca2+ transient, but how this occurs is still not known. We found that stretching of myocytes modulates the elementary Ca2+ release process from ryanodine-receptor Ca2+-release channels (RyRCs), Ca2+ sparks and the electrically stimulated Ca2+ transient. Stretching induces PtdIns-3-OH kinase (PI(3)K)-dependent phosphorylation of both Akt and the endothelial isoform of nitric oxide synthase (NOS), nitric oxide (NO) production, and a proportionate increase in Ca2+-spark frequency that is abolished by inhibiting NOS and PI(3)K. Exogenously generated NO reversibly increases Ca2+-spark frequency without cell stretching. We propose that myocyte NO produced by activation of the PI(3)K–Akt–endothelial NOS axis acts as a second messenger of stretch by enhancing RyRC activity, contributing to myocardial contractile activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stretch modulation of Ca2+ release properties and NO in cardiac myocytes.
Figure 2: The stretch-mediated increase in both spontaneous Ca2+-spark frequency and stimulated-Ca2+ transient amplitude is simulated by exposure to an NO donor, but is not mediated by changes in Ca2+ loading in SR.
Figure 3: Comparison of the stretch dependence of Ca2+ release in wild-type and eNOS-deficient cardiac myocytes.
Figure 4: Stretch increases Akt and eNOS phosphorylation and Ca2+ spark frequency in a PI(3)K-dependent fashion.

Similar content being viewed by others

References

  1. Lakatta, E. G. Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413–467 (1993).

    Article  CAS  Google Scholar 

  2. Allen, D. G. & Kurihara, S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. (Lond.) 327, 79–94 (1982).

    Article  CAS  Google Scholar 

  3. Hongo, K., White, E., Le Guennec, J. Y. & Orchard, C. H. Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. J. Physiol. (Lond.) 491, 609–619 (1996).

    Article  CAS  Google Scholar 

  4. Parmley, W. W. & Chuck, L. Length-dependent changes in myocardial contractile state. Am. J. Physiol. 224, 1195–1199 (1973).

    Article  CAS  Google Scholar 

  5. Pinsky, D. J. et al. Mechanical transduction of nitric oxide synthesis in the beating heart. Circ. Res. 81, 372–379 (1997).

    Article  CAS  Google Scholar 

  6. Feron, O. et al. Endothelial nitric oxide synthase targeting to caveolae: specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J. Biol. Chem. 271, 22810–22814 (1996).

    Article  CAS  Google Scholar 

  7. Levin, K. R. & Page, E. Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ. Res. 46, 244–255 (1980).

    Article  CAS  Google Scholar 

  8. Doyle, D. D. et al. Dystrophin associates with caveolae of rat cardiac myocytes: relationship to dystroglycan. Circ. Res. 87, 480–488 (2000).

    Article  CAS  Google Scholar 

  9. Xu, L., Eu, J. P., Meissner, G. & Stamler J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237 (1998).

    Article  CAS  Google Scholar 

  10. Stoyanovsky, D., Murphy, T., Anno, P. R., Kim, Y. M. & Salama, G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium 21, 19–29 (1997).

    Article  CAS  Google Scholar 

  11. Eu, J. P., Sun, J., Xu, L., Stamler, J. S. & Meissner G. The skeletal muscle calcium release channel: coupled O2 sensor and NO signalling functions. Cell 102, 499–509 (2000).

    Article  CAS  Google Scholar 

  12. Hess, D. T., Matsumoto, A., Nudelman, R. & Stamler, J. S. S-nitrosylation: spectrum and specificity. Nature Cell Biol. 3, E46–E49 (2001).

    Article  CAS  Google Scholar 

  13. Sollott, S. J. & Lakatta, E. G. Novel method to alter length and load in isolated mammalian cardiac myocytes. Am. J. Physiol. 267, H1619–H1629 (1994).

    CAS  PubMed  Google Scholar 

  14. Cheng, H., Lederer, W. J. & Cannell, M. B. Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262, 740–744 (1993).

    Article  CAS  Google Scholar 

  15. Cheng, H. et al. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys. J. 76, 606–617 (1999).

    Article  CAS  Google Scholar 

  16. Zorov, D. B., Filburn, C. R., Klotz, L.-O., Zweier, J. L. & Sollott, S. J. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192, 1001–1014 (2000).

    Article  CAS  Google Scholar 

  17. Willmott, N. J., Wong, K. & Strong, A. J. A fundamental role for the nitric oxide-G-kinase signalling pathway in mediating intercellular Ca2+ waves in glia. J. Neurosci. 20, 1767–1779 (2000).

    Article  CAS  Google Scholar 

  18. Kojima, H. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).

    Article  CAS  Google Scholar 

  19. Wilson, H. L. & Galione, A. Differential regulation of nicotinic acid-adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochem. J. 331, 837–843 (1998).

    Article  CAS  Google Scholar 

  20. Satoh, H., Blatter, L. A. & Bers, D. M. Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am. J. Physiol. 272, H657–H668 (1997).

    Article  CAS  Google Scholar 

  21. Han, S., Schiefer, A. & Isenberg, G. Ca2+ load of guinea-pig ventricular myocytes determines efficacy of brief Ca2+ currents as trigger for Ca2+ release. J. Physiol. (Lond.) 480, 411–421 (1994).

    Article  CAS  Google Scholar 

  22. Bassani, J. W., Yuan, W. & Bers, D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am. J. Physiol. 268, C1313–C1319 (1995).

    Article  CAS  Google Scholar 

  23. Bers, D. M., Bridge, J. H. & Spitzer, K. W. Intracellular Ca2+ transients during rapid cooling contractures in guinea-pig ventricular myocytes. J. Physiol. (Lond.) 417, 537–553 (1989).

    Article  CAS  Google Scholar 

  24. Perez, N. G., Camilion de Hurtado, M. C. & Cingolani, H. E. Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. Circ. Res. 88, 376–382 (2001).

    Article  CAS  Google Scholar 

  25. Fulton, D. et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597–601 (1999).

    Article  CAS  Google Scholar 

  26. Dimmeler, S. et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601–605 (1999).

    Article  CAS  Google Scholar 

  27. Chen, Y., Simasko, S. M., Niggel, J., Sigurdson, W. J. & Sachs, F. Ca2+ uptake in GH3 cells during hypotonic swelling: the sensory role of stretch-activated ion channels. Am. J. Physiol. 270, C1790–C1798 (1996).

    Article  CAS  Google Scholar 

  28. Vila-Petroff, M. G., Younes, A., Egan, J., Lakatta, E. G. & Sollott, S. J. Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ. Res. 84, 1020–1031 (1999).

    Article  CAS  Google Scholar 

  29. Balligand, J. L., Kelly, R. A., Marsden, P. A., Smith, T. W. & Michel, T. Control of cardiac muscle cell function by an endogenous nitric oxide signalling system. Proc. Natl Acad. Sci. USA 90, 347–351 (1993).

    Article  CAS  Google Scholar 

  30. Prendergast, B. D., Sagach, V. F. & Shah, A. M. Basal release of nitric oxide augments the Frank–Starling response in the isolated heart. Circulation 96, 1320–1329 (1997).

    Article  CAS  Google Scholar 

  31. Balligand, J. L., Feron, O. & Kelly, R. A. in Nitric Oxide: Biology and Pathobiology (ed. Ignarro, L.) 585–607 (Academic, San Diego, 2000).

    Book  Google Scholar 

  32. Shah, A. M. & MacCarthy, P. A. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol. Ther. 86, 49–86 (2000).

    Article  CAS  Google Scholar 

  33. Alvarez, B. V., Perez, N. G., Ennis, I. L., Camilion de Hurtado, M. C. & Cingolani, H. E. Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ. Res. 85, 716–722 (1999).

    Article  CAS  Google Scholar 

  34. Kentish, J. C. A role for the sarcolemmal Na+/H+ exchanger in the slow force response to myocardial stretch. Circ. Res. 85, 658–660 (1999).

    Article  CAS  Google Scholar 

  35. Yamazaki, T. et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J. Biol. Chem. 271, 3221–3228 (1996).

    Article  CAS  Google Scholar 

  36. Sadoshima, J., Xu, Y., Slayter, H. S. & Izumo, S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977–984 (1993).

    Article  CAS  Google Scholar 

  37. Yamazaki, T. et al. Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ. Res. 82, 430–437 (1998).

    Article  CAS  Google Scholar 

  38. Saward, L. & Zahradka, P. Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ. Res. 81, 249–257 (1997).

    Article  CAS  Google Scholar 

  39. Takahashi, T. et al. Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am. J. Physiol. 276, H1927–H1934 (1999).

    CAS  PubMed  Google Scholar 

  40. Haendeler, J., Ishida, M., Hunyady, L. & Berk, B. C. The third cytoplasmic loop of the angiotensin II type 1 receptor exerts differential effects on extracellular signal-regulated kinase (ERK1/ERK2) and apoptosis via Ras- and Rap1-dependent pathways. Circ. Res. 86, 729–736 (2000).

    Article  CAS  Google Scholar 

  41. Clerk, A. & Sugden, P. H. Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. Am. J. Cardiol. 83, 64H–69H (1999).

    Article  CAS  Google Scholar 

  42. Naga Prasad, S. V., Esposito, G., Mao, L., Koch, W. J. & Rockman, H. A. G-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J. Biol. Chem. 275, 4693–4698 (2000).

    Article  CAS  Google Scholar 

  43. Calderone, A., Thaik, C. M., Takahashi, N., Chang, D. L. & Colucci, W. S. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J. Clin. Invest. 101, 812–818 (1998).

    Article  CAS  Google Scholar 

  44. Marte, B. M. & Downward, J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355–358 (1997).

    Article  CAS  Google Scholar 

  45. Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N. & Walsh, K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101, 660–667 (2000).

    Article  CAS  Google Scholar 

  46. Rossig, L. et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J. Biol. Chem. 274, 6823–6826 (1999).

    Article  CAS  Google Scholar 

  47. Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science 284, 651–654 (1999).

    Article  CAS  Google Scholar 

  48. Gomez, A. M. et al. Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276, 800–806 (1997).

    Article  CAS  Google Scholar 

  49. Moniotte, S. et al. Upregulation of β3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103, 1649–1655 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E.G. Lakatta and H. Cheng for useful discussions, M.D. Stern for critical comments on the manuscript, and M. Juhaszova, H.A. Spurgeon, K. Tarasov and B.D. Ziman for technical support. This work was supported by the Intramural Research Program, National Institute on Aging (S.J.S.), and an Action de Recherche Concertée (French Community of Belgium) and the National Fund for Scientific Research (J.L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Sollott.

Supplementary information

Supplementary information

Analysis of membrane distribution of caveolae and estimation of the spatial range of NO action (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petroff, M., Kim, S., Pepe, S. et al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3, 867–873 (2001). https://doi.org/10.1038/ncb1001-867

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing