Skip to main content
Log in

Are There Potential Non-Lipid-Lowering Uses of Statins?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Recent clinical trials have demonstrated beyond doubt that statins are effective in the prevention of acute coronary events. Critical analysis of these studies suggests that the benefits of statin therapy cannot be fully explained on the basis of reductions in plasma cholesterol levels. Accumulating knowledge of the actions of these drugs shows that they may prevent several processes that eventually lead to plaque rupture and the development of occlusive thrombosis, the basis of acute coronary events. Hence, statins may correct endothelial dysfunction (thus protecting against ischaemic injury), stabilise existing plaques and modify the coagulation pathway, thereby reducing the likelihood of a sudden vascular event.

At a cellular level, these drugs inhibit the synthesis not just of cholesterol, but of other compounds important in cell proliferation. Antiproliferative effects have been demonstrated in vitro and may broaden the applications of statins to the treatment of noncardiovascular diseases. Finally, preliminary clinical studies indicate that as a result of immunosuppressive actions, statins may reduce the incidence of rejection following organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995 Nov 16; 333: 1301–7

    Article  PubMed  CAS  Google Scholar 

  2. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994 Nov 19; 344: 1383–9

    Google Scholar 

  3. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996 Oct 3; 335: 1001–9

    Article  PubMed  CAS  Google Scholar 

  4. Tonkin A. Long term Intervention with Pravastatin in Ischaemic Disease study (LIPID). Reported at the 70th Congress of the American Heart Association; 1997 Nov 9–12; Orlando (FL)

  5. Hebert PR, Gaziano JM, Chan KS, et al. Cholesterol lowering with statin drugs, risk of stroke, and total mortality. JAMA 1997 Jul 23/30; 278(4): 313–21

    Article  PubMed  CAS  Google Scholar 

  6. Pravastatin Multinational Study Group for Cardiac Risk Patients. Effects of pravastatin in patients with serum total cholesterol levels from 5.2 to 7.8 mmol/liter (200 to 300 mg/dl) plus two additional atherosclerotic risk factors. Am J Cardiol 1993; 72: 1031–7

    Article  Google Scholar 

  7. MAAS investigators. Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS). Lancet 1994 Sep 3; 344: 633–8

    Article  Google Scholar 

  8. Buchwald H, Campos CT, Boen JR, et al. Disease-free intervals after partial ilial bypass in patients with coronary heart disease and hypercholesterolemia: report from the program on the surgical control of the hyperlipidemias (POSCH). J Am Coll Cardiol 1995; 26: 351–7

    Article  PubMed  CAS  Google Scholar 

  9. Byington RP, Jukema JW, Salonen JT, et al. Reduction in cardiovascular events during pravastatin therapy. Pooled analysis of clinical events of the pravastatin atherosclerosis intervention program. Circulation 1995; 92: 2419–25

    CAS  Google Scholar 

  10. Vaughan CJ, Murphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet 1996 Oct 19; 348: 1079–82

    Article  PubMed  CAS  Google Scholar 

  11. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993 Dec 30; 329: 2002–12

    Article  PubMed  CAS  Google Scholar 

  12. Vita JA, Treasure CB, Yeung AC, et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation 1992; 85: 1390–7

    Article  PubMed  CAS  Google Scholar 

  13. Egashira K, Hirooka Y, Kai H, et al. Reduction in serum cholesterol with pravastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation 1994; 89: 2519–24

    Article  PubMed  CAS  Google Scholar 

  14. Andrews TC, Raby K, Barry J, et al. Effect of cholesterol reduction on myocardial ischemia in patients with coronary disease. Circulation 1997; 95: 324–8

    Article  PubMed  CAS  Google Scholar 

  15. van Boven AJ, Jukema JW, Zwinderman AH, et al. Reduction of transient myocardial ischemia with pravastatin in addition to the conventional treatment in patients with angina pectoris. Circulation 1996; 94: 1503–5

    Article  PubMed  Google Scholar 

  16. de Divitiis M, Rubba P, Somma S, et al. Effects of short-term reduction in serum cholesterol with simvastatin in patients with stable angina pectoris and mild to moderate hypercholesterolemia. Am J Cardiol 1996; 78: 763–8

    Article  PubMed  Google Scholar 

  17. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease: a potential noninvasive marker of healing coronary endothelium. Circulation 1994; 89: 1530–8

    Article  PubMed  CAS  Google Scholar 

  18. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993 Apr 29; 362: 801–9

    Article  PubMed  CAS  Google Scholar 

  19. Davies MJ, Thomas AC. Plaque fissuring — the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985; 53: 363–73

    Article  PubMed  CAS  Google Scholar 

  20. Aviram M, Dankner G, Cogan U, et al. Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies. Metabolism 1992 Mar; 41(3): 229–35

    Article  PubMed  CAS  Google Scholar 

  21. Hussein O, Schlezinger S, Rosenblat M, et al. Reduced susceptibility of low density lipoprotein (LDL) to lipid peroxidation after fluvastatin therapy is associated with the hypocholesterolemic effect of the drug and its binding to the LDL. Atherosclerosis 1997; 128: 11–8

    Article  PubMed  CAS  Google Scholar 

  22. Keidar S, Aviram M, Maor I, et al. Pravastatin inhibits cellular cholesterol synthesis and increases low density lipoprotein receptor activity in macrophages: in vitro and in vivo studies. Br J Clin Pharmacol 1994; 38: 513–9

    Article  PubMed  CAS  Google Scholar 

  23. Avellone G, Di Garbo V, Cordova R, et al. Changes induced by pravastatin treatment on hemostatic and fibrinolytic patterns in patients with type IIb hyperlipoproteinemia. Curr Ther Res 1994; 55: 1335–44

    Article  Google Scholar 

  24. Lacoste L, Lam JYT, Hung J, et al. Hyperlipidemia and coronary disease: correction of the increased thromobogenic potential with cholesterol reduction. Circulation 1995; 92: 3172–7

    Article  PubMed  CAS  Google Scholar 

  25. Wada H, Mori Y, Kaneko T, et al. Elevated plasma levels of vascular endothelial cell markers in patients with hypercholesterolemia. Am J Hematol 1993; 44: 112–6

    Article  PubMed  CAS  Google Scholar 

  26. Habenicht AJR, Glomset JA, Ross R. Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem 1980; 255: 5134–40

    PubMed  CAS  Google Scholar 

  27. Quesney-Huneeus V, Galick HA, Siperstein MD, et al. The dual role of mevalonate in the cell cycle. J Biol Chem 1983; 258: 378–85

    PubMed  CAS  Google Scholar 

  28. Quesney-Huneeus V, Wiley MH, Siperstein MD. Essential role for mevalonate synthesis in DNA replication. Proc Natl Acad Sci U S A 1979; 76: 5056–60

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343: 425–30

    Article  PubMed  CAS  Google Scholar 

  30. Maltese WA. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J 1990; 4: 3319–28

    PubMed  CAS  Google Scholar 

  31. Casey PJ, Solski PA, Channing JD, et al. p21 ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci U S A 1989 Nov; 86: 8323–7

    Article  PubMed  CAS  Google Scholar 

  32. Ip JH, Fuster V, Badimon L, et al. Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 1990; 15: 1667–87

    Article  PubMed  CAS  Google Scholar 

  33. Corsini A, Mazzotti M, Raiteri M, et al. Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis 1993; 101: 117–25

    Article  PubMed  CAS  Google Scholar 

  34. Soma MR, Donetti E, Parolini C, et al. HMG CoA reductase inhibitors: in vivo effects on carotid intimal thickening in normocholesterolemic rabbits. ArteriosclerThromb 1993; 13: 571–8

    Article  CAS  Google Scholar 

  35. Weissberg PL, Clesham GJ, Bennett MR. Is vascular smooth muscle cell proliferation beneficial? Lancet 1996 Feb 3; 347: 305–7

    Article  PubMed  CAS  Google Scholar 

  36. Serruys PW. Fluvastatin angioplasty restenosis (FLARE) study: the results. Linking lipids to events: an update [abstract]. Satellite symposium, 11th International Meeting on Atherosclerosis; 1997 Oct 5–9: Paris. London: Blackwell Healthcare Communications, 1997: 12

    Google Scholar 

  37. Bertrand ME, McFadden EP, Fruchart J-C, et al. Effect of pravastatin on angiographic restenosis after coronary balloon angioplasty. J Am Coll Cardiol 1997 Oct; 30: 863–9

    Article  PubMed  CAS  Google Scholar 

  38. Weintraub WS, Boccuzzi SJ, Klein JL, et al. Lack of effect of lovastatin on restenosis after coronary angioplasty. N Engl J Med 1994 Nov 17; 331: 1331–7

    Article  PubMed  CAS  Google Scholar 

  39. Keane WF, Kasiske BL, O’Donnell MP, et al. Hypertension, hyperlipidemia and renal damage. Am J Kidney Dis 1993 May; 21 Suppl. 2: 43–50

    PubMed  CAS  Google Scholar 

  40. Wheeler DC. Lipids — what is the evidence for their role in progressive renal disease? Nephrol Dial Transplant 1995 Jan; 10: 14–6

    PubMed  CAS  Google Scholar 

  41. O’Donnell MP, Kasiske BL, Kim Y, et al. Lovastatin inhibits proliferation of rat mesangial cells. J Clin Invest 1993; 91: 83–7

    Article  PubMed  Google Scholar 

  42. Vitols S, Angelin B, Juliusson G. Simvastatin impairs mitogen-induced proliferation of malignant B-lymphocytes from humans — in vitro and in vivo studies. Lipids 1997; 32: 255–62

    Article  PubMed  CAS  Google Scholar 

  43. Soma MR, Pagliarini P, Butti G, et al. Simvastatin, an inhibitor of cholesterol biosynthesis, shows a synergistic effect with N,N′-bis(2-chloroethyl)-N-nitrosourea and β-interferon on human glioma cells. Cancer Res 1992 Aug 15; 52: 4348–55

    PubMed  CAS  Google Scholar 

  44. Kobashigawa JA, Kasiske BL. Hyperlipidemia in solid organ transplantation. Transplantation 1997 Feb 15; 63: 331–8

    Article  PubMed  CAS  Google Scholar 

  45. Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995 Sep 7; 333: 621–7

    Article  PubMed  CAS  Google Scholar 

  46. Jenkins GH, Grieve LA, Yacoub MH, et al. Effect of simvastatin on ejection fraction in cardiac transplant recipients. Am J Cardiol 1996 Dec 15; 78: 1453–6

    Article  PubMed  CAS  Google Scholar 

  47. Katznelson S, Wilkinson AH, Kobashigawa JA, et al. The effect of pravastatin on acute rejection after kidney transplantation: a pilot study. Transplantation 1996 May 27; 61: 1469–74

    Article  PubMed  CAS  Google Scholar 

  48. Cutts JL, Bankhurst AD. Suppression of lymphoid cell function in vitro by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by lovastatin. Int J Immunopharmacol 1989; 11: 863–9

    Article  PubMed  CAS  Google Scholar 

  49. Kreuzer J, Bader J, Jahn L, et al. Chemotaxis of the monocyte cell line U937: dependence on cholesterol and early mevalonate pathway products. Atherosclerosis 1991; 90: 203–9

    Article  PubMed  CAS  Google Scholar 

  50. Cutts JL, Bankhurst AD. Reversal of lovastatin-mediated inhibition of natural killer cell cytotoxicity by interleukin 2. J Cell Physiol 1990; 145: 244–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Wheeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, D.C. Are There Potential Non-Lipid-Lowering Uses of Statins?. Drugs 56, 517–522 (1998). https://doi.org/10.2165/00003495-199856040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199856040-00001

Keywords

Navigation