Article Text

Download PDFPDF

The benefits and risks of risk-adjustment in paediatric cardiac surgery
  1. Christina Pagel1,
  2. Sonya Crowe1,
  3. Katherine Brown2,
  4. Martin Utley1
  1. 1Clinical Operational Research Unit, University College London, London, UK
  2. 2Cardiac Unit, Great Ormond Street Hospital for Children, London, UK
  1. Correspondence to Dr Christina Pagel, Clinical Operational Research Unit, University College London, 4 Taviton Street, London WC1H 0BT, UK; c.pagel{at}

Statistics from

Outcomes following paediatric cardiac surgery have long been the subject of clinical, regulatory, media and public scrutiny. There are several reasons for this. The work is among the most technically challenging, resource intensive and emotionally charged clinical activity undertaken. In the UK, past events, public inquiries and intentions to reduce the number of centres performing this surgery provide a rich source of back-stories and a level of public awareness that make paediatric cardiac surgery ripe for political comment and productive journalism.

In this context, collection and open reporting of outcome data at a national level is as fraught with difficulties as it is inescapable. Chief among these is a reasonable expectation from the profession that audit will be ‘fair’ to clinical teams. This translates to a view that, in the reporting of outcomes, account should be taken of the hugely diverse set of diagnoses and comorbid conditions that patients present with, the wide range of surgical procedures performed, differences in case mix between centres and the impact of the relatively small numbers of patients on what can reliably be inferred from data. These characteristics of the specialty make risk-adjustment in outcomes analysis deemed essential, but they also make it very difficult to achieve.

Efforts in a number of countries to collect standardised data on case mix and outcomes for paediatric cardiac surgery (including our own national audit in the UK) have led to a shift from the use of consensus-based risk stratification tools (eg, RACHS-11 and ARISTOTLE2) to risk estimates based on empirical data, for example, the STS-EACTS score.3 This has subtly shifted how risk is conceived of. Earlier subjective methods took account of how intrinsically difficult and complex the operations were. Empirical methods do not—they account for how successful clinical teams are at getting patients through …

View Full Text

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.