Article Text

3 Angiotensin 1–7 regulation of endothelin-1 system in pulmonary hypertension
  1. Katie Yates Hood1,
  2. Hiba Yusuf2,
  3. Jane E Findlay1,
  4. Robson A Santos3,
  5. Carlos H Castro3,
  6. George S Baillie1,
  7. Augusto C Montezano1,
  8. Margaret R MacLean1,
  9. Rhian M Touyz1
  1. 1Institute of Cardiovascular and Medical Sciences, BHF GCRC, University of Glasgow, UK
  2. 2Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Canada
  3. 3Institute of Biological Sciences, Minas Gerais, Brazil


ACE2 and Ang1–7 have been shown to protect against pulmonary hypertension (PH). Mechanisms remain unclear. Considering the important role of ET-1 in PH pathophysiology and endothelial dysfunction, we asked whether Ang1–7 influences ET-1 signalling in PH. Human endothelial cells (HMEC) were stimulated with ET-1 in absence/presence of Ang1–7 and showed that Ang1–7 increased ET-1 release (125%) and ETBR protein (50%), p < 0.05. Ang1–7 increased NO production (257%) in a Mas and ETBR-dependent manner. Mas and ETBR interaction was observed by immunoprecipitation. To characterise physical interaction between Mas/ETBR, we utilised novel technology, employing peptides scanning the MasR sequence, to define sites of ETBR binding. Mutagenesis identified regions on MasR that confer specificity for ETBR. Peptide disruptors were used for in vitro validation. We previously demonstrated in HMEC that Ang1–7 stimulates Akt phosphorylation (180%), an effect inhibited by peptide disruptors, p < 0.05. To investigate pathophysiological significance, we investigated whether Ang1–7 treatment ameliorates PH. Hypoxia was used to induce PH in mice: normoxic controls (NC), hypoxic PH (HP), normoxic (NA) and hypoxic PH (HA) treated with Ang1–7 30 µg/kg/day. In HP mice, RVSP (18.7 NC vs. 47.6 mmHg HP, p < 0.05) RVH (0.19 NC vs. 0.28 HP, p < 0.01) and ET-1 levels (0.8 NC vs 2.4 pg/ml HP, p < 0.05) were increased and blocked by Ang1–7. Hypercontractility and endothelial dysfunction in HP mice was attenuated by Ang1–7. These findings indicate that vasoprotective effects of Ang1–7 may be mediated through MAS: ETBR dimerization. In conclusion we have identified a novel link between Ang1–7 and ET-1 through physical interactions between MAS and ETBR.

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.