Article Text

Download PDFPDF
Roadmap for biomarkers of cancer therapy cardiotoxicity
  1. Anthony F Yu1,
  2. Bonnie Ky2,3
  1. 1Department of Medicine, Cardiology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
  2. 2Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
  3. 3Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
  1. Correspondence to Dr Bonnie Ky, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Division of Cardiovascular Medicine, Smilow Center for Translational Research, 3400 Civic Center Boulevard, 11-105, Philadelphia, PA 19104, USA; Bonnie.ky{at}uphs.upenn.edu

Abstract

Contemporary cancer treatment uses multiple modalities such as chemotherapy, targeted therapy and radiotherapy. These therapies, often used in combination, are associated with an increased risk of cardiotoxicity, specifically cardiomyopathy and heart failure. Cardiologists and oncologists are faced with the challenge of maximising the clinical benefit from cancer therapy while minimising the risk of early and late-onset cardiotoxicity. The current paradigm for cardiotoxicity detection and management relies primarily upon the assessment of left ventricular ejection fraction (LVEF). However, LVEF alone is limited in both diagnostic and prognostic ability. There is growing enthusiasm over the identification of newer biomarkers of cardiotoxicity that can detect cardiac injury at earlier stages of disease and could be used as an adjunctive prognostic measure to routine LVEF assessment. Thus, imaging and circulating biomarkers are currently under active investigation for use throughout the continuum of cancer care—for risk stratification of cardiotoxicity prior to treatment, detection of early cardiotoxicity during treatment and diagnosis of late cardiotoxicity in survivorship. Myocardial strain, cardiac troponin and brain natriuretic peptide are the most prominent biomarkers currently being studied, although data on novel circulating biomarkers are emerging.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.