Article Text

Download PDFPDF

47 Data independent acquisition mass spectrometry in severe rheumatic heart disease (rhd) identifies a proteomic signature showing ongoing inflammation and effectively classifying rhd cases
Free
  1. Jing Yang1,
  2. Taariq Salie2,
  3. Carlos R Ramírez Medina3,
  4. Simon Frain3,
  5. Nophar Geifman4,
  6. Anthony Whetton4,
  7. Mark Engel2,
  8. Bernard Keavney3
  1. 1The University of Manchester, Division of Cardiovascular Sciences, The University of Manchester, Manchester, GTM M13 9PT, United Kingdom
  2. 2The University of Cape Town
  3. 3The University of Manchester
  4. 4The University of Surrey

Abstract

Rheumatic heart disease (RHD) remains a major source of morbidity and mortality in developing countries. A deeper insight into the pathogenetic mechanisms underlying RHD could provide opportunities for drug repurposing, guide recommendations for secondary penicillin prophylaxis, and/or inform development of near-patient diagnostics.We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectrometry (SWATH-MS) to screen protein expression in 215 African patients with severe RHD, and 230 controls. We applied a machine learning (ML) approach to feature selection among the 366 proteins quantifiable in at least 40% of samples, using the Boruta wrapper algorithm. The case-control differences and contribution to area under the Receiver Operating Curve for each of the 56 proteins identified by the Boruta algorithm were calculated by Logistic Regression adjusted for age, sex and BMI. Biological pathways and functions enriched for proteins were identified using ClueGo pathway analyses.Adiponectin, complement component C7 and fibulin-1, a component of heart valve matrix, were significantly higher in cases when compared with controls (Table 1). Ficolin-3, a protein with calcium-independent lectin activity that activates the complement pathway, was lower in cases than controls (Table 1). The top six biomarkers, including adiponectin, complement component C7, quiescin sulfhydryl oxidase 1, insulin like growth factor binding protein acid labile subunit, pregnancy zone protein and phosphatidylinositol-glycan-specific phospholipase D, from the Boruta analyses (Fig. 1a) conferred an AUC of 0.90 indicating excellent discriminatory capacity between RHD cases and controls (Fig. 1b).ClueGo pathway analysis results of these biomarkers support the presence of an ongoing inflammatory response in RHD (Fig. 2), at a time when severe valve disease has developed, and distant from previous episodes of acute rheumatic fever. This biomarker signature could have potential utility in recognizing different degrees of ongoing inflammation in RHD patients, which may, in turn, be related to prognostic severity.

Conflict of Interest None

  • rheumatic heart disease
  • protein signature
  • inflammatory response

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.