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ABSTRACT
Knowledge of right ventricular (RV) structure and 
function has historically lagged behind that of the left 
ventricle (LV). However, advancements in invasive and 
non-invasive evaluations, combined with epidemiological 
analyses, have advanced the current understanding of 
RV (patho)physiology across the spectrum of health 
and disease, and reinforce the centrality of the RV in 
contributing to clinical outcomes. In the healthy heart, 
ventricular-arterial coupling is preserved during rest 
and in response to increased myocardial demand (eg, 
exercise) due to substantial RV contractile reserve. 
However, prolonged exposure to increased myocardial 
demand, such as endurance exercise, may precipitate 
RV dysfunction, suggesting that unlike the LV, the RV is 
unable to sustain high levels of contractility for extended 
periods of time. Emerging data increasingly indicate 
that both LV and RV function contribute to clinical 
heart failure. Reductions in quality-of-life, functional 
capacity and overall clinical outcomes are worsened 
among patients with heart failure when there is evidence 
of RV dysfunction. In addition, the RV is adversely 
impacted by pulmonary vascular disease, and among 
affected patients, overall RV function differs based on 
mechanisms of the underlying pulmonary hypertension, 
which may result from variations in sarcomere function 
within RV cardiomyocytes.

INTRODUCTION
Knowledge of right ventricular (RV) function in 
health and disease has historically lagged behind 
that of the left ventricle (LV).1 2 Early on, it was 
concluded that a normally functioning RV ‘is not 
necessary for the maintenance of a normal circu-
lation’3 and one whose function was limited to 
that of a conduit between the venous and pulmo-
nary circuits.4 However, the centrality of the RV 
to normal cardiovascular and pulmonary physi-
ology, as well as symptom burden and overall 
outcomes in cardiovascular and pulmonary 
disease, is increasingly recognised.5 6 Neverthe-
less, large gaps in knowledge persist regarding 
function of the RV in normal healthy individuals, 
as well as RV pathophysiology in cardiovascular 
and pulmonary disease, and finally, effective 
methods for managing RV dysfunction in these 
populations.5 6 The American Heart Association 
recently emphasised that ‘It is remarkable how 
misunderstood are some basic concepts of right 
sided heart dysfunction among practicing clini-
cians and the impact that such misunderstanding 
can have on appropriate patient management’.5 
Over the past several years, however, the RV has 
been increasingly scrutinised and new insights 
have been made, both by advanced imaging tech-
niques and pressure-volume (PV) analysis, a gold 

standard method of characterising ventricular 
function.2 7–11 The epidemiology of RV dysfunc-
tion in cardiovascular disease has been previously 
reviewed.5 In this review, we provide a compre-
hensive yet concise review on advancements in 
understanding of RV physiology across the spec-
trum of health and disease, from elite athletes to 
normal healthy individuals, as well as RV func-
tion in heart failure with preserved ejection frac-
tion (HFpEF), pulmonary vascular disease, heart 
failure with reduced ejection fraction (HFrEF) 
and HFrEF patients supported by mechanical 
circulatory support. Finally, we highlight the 
centrality of the RV as evidenced by its impact 
on clinical outcomes, and emphasise knowledge 
gaps that must be overcome to improve outcomes 
in this area.

THE NORMAL RIGHT VENTRICLE
The normal RV is thin-walled (~3–5 mm) and 
highly compliant when compared with its left-
sided counterpart.12 Under resting conditions, 
RV afterload (pulmonary arterial pressure) is 
low and deoxygenated blood is transited into 
the lungs at minimal cost to overall myocardial 
oxygen demand. For example, the resting RV 
extracts ~50% of oxygen (O2) supplied by coro-
nary blood flow, whereas the LV extracts ~75% 
under resting conditions.12 In response to an 
increase in LV O2 demand, coronary blood flow 
increases, whereas increases in RV O2 demand are 
met either by an increase in coronary blood flow 
or O2 extraction.12 It was recently demonstrated 
that the RV has substantial stroke volume reserve 
and in the setting of increased O2 demand, that 
is, exercise, RV cardiac output (Qc) and myocar-
dial energetics increase by ~fourfold from rest to 
peak effort (figure 1A), with some metrics of RV 
systolic function approximating levels observed 
in the LV.7

The RV and pulmonary circulation are best 
viewed as a combined functioning unit.13 
Ventricular-arterial (VA) coupling describes the 
relationship between a ventricle and the circula-
tion (pulmonary for the RV, systemic for the LV) 
it supplies and is quantified by the ratio of end-
systolic elastance (EES, contractility) to effective 
arterial elastance (EA, afterload).7 The contrac-
tile reserve of the RV ensures that EES increases 
sufficiently in response to increases in afterload, 
ensuring that VA coupling is preserved when 
metabolic demand increases.7 The RV also has 
substantial lusitropic reserve, meaning that during 
increased metabolic demand, it facilitates venous 
return in conjunction with the muscle pump 
and vasodilatory forces.7 14 Thus, throughout 
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all phases of the cardiac cycle, under resting conditions and 
in response to increased metabolic demand, the healthy RV 
precisely regulates forward flow of blood to the LV to support 
systemic perfusion.

RV FORM AND FUNCTION IN HIGHLY TRAINED ATHLETES
The heart of an endurance athlete exhibits enlargement of both 
the LV and the RV (figure 2), supporting the concept of what 
has been referred to as ‘balanced dilatation’.15 16 In a case-
control analysis of elite endurance athletes (n=127) partici-
pating in orienteering, cross-country skiing or middle-distance 
running, athletes had enlarged RV chamber sizes compared 
with historical controls.17 Specifically, RV mass (77±10 g 
vs 56±8 g) and RV end-diastolic volume (160±26 mL vs 
128±10 mL) were significantly greater among athletes versus 
controls.17 In contrast, static exercise (strength-training) does 
not significantly impact RV size. Among collegiate athletes 
participating in either endurance (rowing, n=40) or strength 
training (football, n=40), who were evaluated prior to and 
following 3 months of training, RV dilatation was observed 
among endurance-trained athletes (baseline vs follow-up RV 
end-diastolic area: 1460±220 mm/m2 vs 1650±200 mm/m2), 
along with enhancements in parameters of RV systolic and 
diastolic function.18 However, no changes in RV size or func-
tion were observed among strength-trained athletes.18

Sustained increases in RV afterload, such as occurs during 
endurance athletics, may increase RV wall stress according to 

the Law of Laplace. In some cases, this increase in RV stress 
may precipitate RV dysfunction (RVD), the degree to which 
is in proportion to the duration of exercise.19 In a series of 
highly performing endurance athletes, compared with pre-
race baseline assessments, metrics of RV systolic function, 
including ejection fraction, tricuspid annular plane systolic 
excursion (TAPSE), and strain, declined and RV volumes 
increased when assessed following completion of the event.19 
Furthermore, athletes competing in longer races of ≥11 hours 
had greater decrements in RV systolic function than individ-
uals completing races of 3–5.5 hours’ duration.19

IMPACT OF PULMONARY VASCULAR DISEASE ON RV 
FUNCTION
Pulmonary arterial hypertension (PAH), previously defined 
as a mean pulmonary artery pressure greater than 25 mm Hg, 
has been recently redefined as a mean pulmonary artery pres-
sure greater than 20 mm Hg along with a pulmonary vascular 
resistance (PVR) of ‍≥‍3 Woods.20 The reason for this change 
stems from the somewhat arbitrary and historical assignment 
of 25 mm Hg as a cut-off value to define abnormal mean 
PAP.20 Data from 1187 normal subjects demonstrated that a 
normal resting mean PAP is 14.0±3.3 mm Hg and 2 standard 
deviations above the upper level of normal, that is, a mean 
PAP>20 mm Hg, represents a more scientifically based cut-off 
value for identifying PAH.20 In addition, exercise PAH (mean 
PAP>30 mm Hg during exercise) has been removed from the 
diagnostic criteria20, since even normal individuals experience 
large increases in mean PAP during exercise by  ~1 mm Hg 
for every 1 L/min increase in Qc20 that are frequently well 
above 30 mm Hg (figure  3). In the healthy RV, VA coupling 
is maintained even in response to this acute (short-term) rise 
in afterload. Thus, an increase in mean PAP during exercise 
is not necessarily indicative of a pathological state, particu-
larly if RV contractility is able to appropriately compensate in 
response to the increase in afterload and metabolic demand. 
However, in a study of 26 patients with PAH, RV-PA coupling 
predicted time to clinical worsening, even in patients with 
preserved RV systolic function.21

Elegant studies by Tedford et al demonstrated that resting 
and exertional RV performance are quite different from what 
has been observed in the healthy RV, and furthermore, RV 
performance varies according to the aetiology of PAH.2 22 For 
example, for any given RV afterload, RV systolic function 
is worse among patients with PAH related to systemic scle-
rosis (SSc) than patients with idiopathic PAH.2 Using RV PV 

Figure 1  Example of right ventricular pressure-volume analysis derived from (A) a healthy control7; (B) a patient with heart failure with reduced 
ejection fraction (unpublished data from senior author’s laboratory); and (C) a patient with heart failure with reduced ejection fraction supported by a 
continuous-flow left ventricular assist device.8 All data obtained from senior author’s laboratory.

Figure 2  Apical four-chamber two-dimensional echocardiogram 
of the heart of a 23-year-old non-athlete (left) and a 23-year-old 
professional cyclist. The volume load of endurance athletics results in 
dilatation of all four cardiac chambers. The 10 cm echocardiographic 
field depth is marked in red to highlight the differences in cardiac size. 
Reproduced with permission.16
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analysis during exercise, patients with SSc-PAH demonstrated 
an increase in RV end-systolic and end-diastolic volumes and 
there was a blunted increase in Qc, along with VA uncoupling. 
None of these abnormalities were observed among patients 
with IPAH (figure  4).22 Interestingly, sarcomere function, 
isolated from cardiac myocytes, is depressed among patients 
with SSc-PAH but enhanced in IPAH, which may explain, at 
least in part, the difference in RV physiology in these patient 
populations.9

CARDIOVASCULAR HAEMODYNAMICS AND RV FUNCTION 
IN PATIENTS WITH HEART FAILURE WITH PRESERVED 
EJECTION FRACTION
HFpEF, accounting for ~50% of all cases of HF, is a complex 
multifactorial disease. While abnormalities in LV diastolic func-
tion play a prominent role in HFpEF, emerging data suggest 
that HFpEF is a biventricular phenomenon.10 RV PV analysis 
performed during hand-grip exercise in patients with HFpEF 
versus controls revealed several abnormalities related to RV 
function among patients with HFpEF, including a marked 
upward increase in the RV end-diastolic pressure-volume rela-
tionship during exercise (figure 5), with an increase in β-stiffness 
constants, prolonged RV relaxation time, reduction in stroke 
volume and a blunted increase in Qc compared with controls.10

Among patients with HFpEF, abnormalities in RV function 
should be placed in the context of global abnormalities in cardio-
vascular and pulmonary disease, such as pre-capillary versus post-
capillary pulmonary hypertension. Compared with controls, 
patients with HFpEF have a higher PAP and higher left-sided 
filling pressures,23 as well as VA uncoupling during exercise.24 In 
an analysis of resting haemodynamic parameters, patients with 
HFpEF had higher mean PAP (36±11 mm Hg vs 16±5 mm Hg) 
and lower PA compliance (3.0±1.4 mL/mm Hg vs 4.4±1.4 mL/
mm Hg) than controls.25 In an analysis of exercise haemody-
namics, patients with HFpEF were limited by a blunted Qc rela-
tive to maximum oxygen uptake (VO2max) and a steep PAP-Qc 
relationship compared with controls, indicative of RV-PA uncou-
pling.24 In a subset of patients with HFpEF and severe obesity, 
mean body mass index (BMI) of 41 kg/m2, endomyocardial 

Figure 3  Example of tracings of haemodynamic response to exercise 
in a healthy 48-year-old man (185 cm, 92 kg) without any history of 
cardiovascular or pulmonary disease. Fick cardiac output and oxygen 
uptake (VO2) values during exercise: Rest pre-exercise: 5.0 L/min, 
3.8 mL/kg/min; 100 Watts: 10.2 L/min, 12.1 mL/kg/min;150 Watts: 
14.6 L/min, 20.7 mL/kg/min; 250 Watts: 21.3 L/min, 31.1 mL/kg/min. 
Unpublished data from senior author’s laboratory.

Figure 4  Example of right ventricular pressure-volume analysis 
during supine ergometry exercise from a patient with idiopathic 
pulmonary arterial hypertension (IPAH), systemic sclerosis-associated 
PAH (SSc-PAH) and a control patient with dyspnoea not related to 
pulmonary hypertension (PH). Data obtained at rest (stage 0), as well 
as progressive increases in exercise intensity (stages 1–3). Black point 
represents the point of end-systolic pressure volume relationship 
(ESPVR). Reproduced with permission.22 RVP, right ventricular pressure; 
RVV, right ventricular volume.
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biopsy samples demonstrated substantially depressed RV systolic 
sarcomere function, but less passive myocyte stiffening when 
compared with samples from patients with a mean BMI of 30 
kg/m2,26 reinforcing the notion that abnormalities in LV and RV 
function contribute to HFpEF.

RV FUNCTION IN HEART FAILURE WITH REDUCED EJECTION 
FRACTION
Up to 50% patients with HFrEF suffer from biventricular 
dysfunction,27 and the prevalence and severity of RVD increase 
in proportion to the severity of LV dysfunction.28 While RVD 
may be present in a large portion of patients with both HFpEF 
and HFrEF, the determinants of RV dysfunction, and charac-
teristics of RV dysfunction, differ according to the type of HF. 
In an analysis of 1663 patients with HF, among those with 
HFrEF, a non-sinus rhythm, high heart rate, ischaemic aeti-
ology and E-wave deceleration time <140 ms were associated 
with a reduced TAPSE, whereas among patients with HFpEF, 
pulmonary arterial systolic pressure (PASP) >40 mm Hg was 
associated with reduced TAPSE.29 The pulmonary artery 
pulsatility index (PAPi, ratio of PA pulse pressure to right 
atrial pressure), is a powerful predictor of RV failure and 
adverse clinical events in patients with advanced HFrEF.30 
For any PAP, RVD is also more severe among patients with 
HFrEF than HFpEF.31 Additionally, the PAPi is an excellent 

predictor of RV sarcomere contractile dysfunction in patients 
with HFrEF.32 In a cross-sectional analysis of patients with 
HFpEF (n=219) and HFrEF (n=219), after controlling for 
PASP, the ratio of RV longitudinal strain to PASP was lower in 
HFrEF versus HFpEF (−0.53±0.36 vs −0.75±0.32).31

RVD among patients with HFrEF is also associated with 
reduced VO2max.33 In an analysis of patients with HFrEF 
(n=25), VO2max was 13±4 mL/kg/min and correlated with 
RV ejection fraction.33 In another study of 97 patients with 
HFrEF, individuals were grouped according to TAPSE of <16 
or ≥16 mm.13 Those with TAPSE  <16 mm were subdivided 
by whether TAPSE at peak exercise was >15.5 mm. Despite 
similar baseline characteristics, those with a higher TAPSE 
at peak exercise had greater RV contractile reserve and VA 
coupling was preserved during exercise, compared with indi-
viduals with a persistently reduced TAPSE throughout exer-
cise.13 These observations indicate that the lack of RV stroke 
volume reserve (figure  1B) significantly impairs exercise 
capacity and contributes to reductions in VO2max in these 
patients.

IMPACT OF MECHANICAL CIRCULATORY SUPPORT ON RV 
FUNCTION IN HFREF
Continuous-flow (CF) left ventricular assist devices (LVADs) 
improve survival for patients with advanced HFrEF.34 
However, up to 40% of patients develop RV dysfunction 
over time, and when present, significantly impairs quality-of-
life and survival.8 Patients with HFrEF supported by CF-L-
VADs have limited RV stroke volume reserve during exercise 
(figure  1C).8 Specifically, among 13 patients with normal 
supine resting RV function, Qc increased minimally from 
5.1±2.3 L/min to 8.0±3.4 L/min during submaximal exercise 
below ventilatory threshold, with very limited increase when 
transitioning from submaximal to peak effort (9.1±3.3 L/
min). Notably, the increase in RV stroke volume from rest to 
peak exercise was minimal (only 14 mL/beat), indicating that 
the increase in Qc was primarily driven by heart rate.8

There is also great interest in determining how variations in 
level of support, achieved through modulations in CF-LVAD 
pump speed, influence RV function. In an analysis of patients 
with CF-LVAD (n=35), increases in pump speed optimised 
unloading of the LV, as evidenced by a reduction in PCWP, 
but there were minimal changes in right atrial pressure.35 
Similarly, RV PV analysis has also demonstrated that adjust-
ments in LVAD pump speed have little impact on RV func-
tion, with minimal change in metrics of contractility, lusitropy 
or myocardial energetics across a range of CF-LVAD pump 

Figure 6  Echocardiographic assessment of an 83-yearl-old patient with a dilated right ventricle with systolic dysfunction. Three-dimensional 
echocardiography demonstrates the right ventricle during diastole (A) and systole (B). Transoesophageal echocardiography of the same patient 
demonstrates right ventricular structure during diastole (C) and systole (D).

Figure 5  Right ventricular (RV) end-diastolic pressure-volume 
relations from patients with heart failure with preserved ejection 
fraction (HFpEF) and controls. Solid lines indicate resting condition 
and dashed lines indicate response to handgrip exercise. Black curves 
represent end-diastolic pressure volume curves determined vena caval 
occlusion. Note the upward shift in the end-diastolic pressure-volume 
relationship during exercise among patients with HFpEF compared with 
that of the control patients. Reproduced with permission.10
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speeds.8 These observations suggest that the aforementioned 
limitations in RV contractile reserve during exercise are, at 
least in part, related to underlying RV dysfunction resulting 
from HFrEF, as opposed to a direct effect of the pump on the 
RV.

There has been a recent movement towards implanting 
CF-LVADs by a lateral thoracotomy as opposed to median 
sternotomy.36 Under normal conditions, the septum and its 
longitudinal shortening during systole account for the bulk 
(77%±14%) of overall contraction of the RV.37 RV function 
is distorted—at least temporarily, following cardiac surgeries, 
particularly those that involve pericardiotomy,38 39 due to a 
reduction in longitudinal shortening. Non-randomised studies 
suggest that thoracotomy may reduce the risk of postopera-
tive complications including development of RVD and use of 
RV assist devices when compared with rates observed with 
sternotomy.40

IMPACT OF RVD ON CLINICAL OUTCOMES
Among the general population of patients who are referred 
for echocardiography studies, RV ejection fraction is a 
powerful and independent predictor of clinical outcomes,41 
and RV dysfunction is a more powerful predictor of outcomes 
compared with LV dysfunction.42 Among elite athletes, 
studies evaluating RVD during long duration exercise have 
been limited to assessments of function prior to,and following 
the event. It is unclear how exercise tolerance changes as RVD 
develops. Available data suggest that RVD is temporary, with 
normalisation of function within 1 week of follow-up.19 Some 
athletes may develop myocardial fibrosis, particularly in the 
interventricular septum. Generally, fibrosis seems to occur 
among athletes who have been competing in endurance sports 
for longer periods of time,19 suggesting that cumulative bouts 
of long duration exercise may promote arrhythmias in these 
patients, particularly as scarring/fibrosis develops.19 43

Across the spectrum of cardiovascular and pulmonary disease, 
RV dysfunction, when present, adversely effects quality-of-life, 

functional capacity and overall outcomes. In a large community 
study of patients with HFpEF from Olmstead County, Minne-
sota, USA (n=562), the presence of RVD was associated with 
higher all-cause mortality (hazard ratio (HR) 1.35, 95% confi-
dence intervals (CIs) 1.0 to 1.77), cardiovascular mortality (HR 
1.85, 95% CI 1.20 to 2.80) and rate of multiple HF-related 
hospitalisations (HR 1.81, 95% CI 1.18 to 2.78).44 In a group of 
46 patients with HFpEF who underwent right heart catheterisa-
tion, the 2-year survival was 56% in those with RVD, compared 
with 93% in patients without RVD and on multivariable anal-
ysis, RVD was the strongest predictor of death.25 Finally, RVD 
is associated with greater comorbidities, including atrial fibrilla-
tion and coronary artery disease, than HFpEF patients without 
RVD.25 45

RV dysfunction is the leading cause of death among patients 
with PAH46 and VA uncoupling, when present, predicts time 
to clinical worsening.45 In a haemodynamic study of patients 
with severe PAH (n=38) with mean PAP 47±15 mm Hg and 
pulmonary vascular resistance of 7 (interquartile range 5–11) 
Woods units, VA uncoupling (defined as an EES/EA cut-off of 0.7 
or below) was associated with a reduction in exercise capacity 
(−15% reduction on 6-minute walk test), worsening of World 
Health Organization functional classification, and clinical dete-
rioration requiring hospitalisation.45

Among patients with HFrEF, the presence of RVD signifi-
cantly increases risk of mortality.47 Among patients hospital-
ised with decompensated HFrEF, RVD more than doubles the 
90-day risk of mortality, cardiac transplantation and CF-LVAD 
implantation.48 In both HFpEF and HFrEF, abnormalities in 
RV longitudinal strain increase risk of all-cause death and HF 
hospitalisation by more than threefold.31 Among patients with 
HFrEF supported by CF-LVAD, survival is significantly worse 
among individuals with RVD than those without.49 In an anal-
ysis of patients with CF-LVAD, 2-year survival was 60% among 
patients with RVD (defined as RVD requiring rehospitalisation 
or medical/surgical treatment after the index hospital discharge), 
but 85% among individuals without RVD.49

Table 1  Non-invasive imaging assessment modalities of right ventricular structure and function

Two-dimensional echocardiography 
(2DE)

Three-dimensional 
echocardiography (3DE)

Cardiac computed 
tomography (CCT)

Cardiac magnetic resonance 
(CMR)

Description Conventional linear and area measures of 
ventricular size and function

Pyramidal data sets of right 
ventricular inflow, outflow and apex

Structural and functional 
assessment of RV with 
submillimeter special resolution

Multiparametric analysis allows for 
accurate assessment of volume/
function, and identification of 
pathological processes

Advantages 	► Portability
	► Cost
	► Automated functional imaging allows 

for global longitudinal RV strain 
assessment

	► No geometric assumptions
	► Volume-rendering and 

tomographic views
	► Endocardial surface mapping

	► No geometric assumptions
	► Spatial resolution
	► Advantageous for 

patients with CMR 
contraindications

	► Reproducibility
	► Spatial resolution
	► RV size/function quantification
	► Tissue properties (late 

gadolinium enhancement)

Disadvantages 	► Difficulty visualising RV in its entirety
	► Variability in measurements
	► Assumptions about RV shape

	► Dedicated software required
	► Inability to visualise entire RV, 

particularly for cases of severe RV 
dilatation

	► Dedicated software 
required

	► Motion artefact from high 
heart rate

	► Ionising radiation and 
contrast exposure

	► Contraindications: 
claustrophobia, pacemaker/ 
defibrillator

	► Breath holds during acquisition
	► Lack of availability

Notes 	► Impossible to precisely quantify RV 
volume

	► Volume measures comparable 
to CMR

	► Recommended echocardiographic 
technique for assessment of RV 
size and function

	► Requires dedicated study 
with right-sided contrast 
timing

	► Reliably assesses volume/
function compared with 
CMR

	► Gold standard method of 
non-invasive assessment of RV 
volume and function

RV, right ventricular.
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NON-INVASIVE ASSESSMENT OF RV STRUCTURE AND 
FUNCTION
Conventional two-dimensional echocardiography is insuffi-
cient for comprehensive assessment of the RV due to the unique 
geometry of the RV (triangular shape in the coronal plane and 
crescent shape in the transverse plane) as well as its superfi-
cial location (immediately posterior to the sternum), making it 
essentially impossible to view the RV in its entirety. However, 
more comprehensive and reliable assessments of the RV can be 
achieved with modalities such as three-dimensional echocardi-
ography (figure 6), cardiac magnetic resonance imaging (MRI) 
which is considered the gold standard,50 as well as cardiac 
computed tomography (table 1).

KNOWLEDGE GAPS AND FUTURE DIRECTIONS
Despite recent advancements in understanding of RV pathophys-
iology in different disease states, several areas of uncertainty 
persist. These knowledge gaps impair patient management and 
may adversely impact clinician decision-making and overall clin-
ical outcomes. It remains to be determined how factors such as 
demographics, comorbidities and modifiable risk factors influ-
ence RV function across the lifespan.5 6 Also unclear is how varia-
tions in genomic, proteomic and metabolomic profiles influence 
RV physiology in normal and diseased states, which may guide 
identification of novel therapeutic targets.6 Finally, it is unclear 
whether improvements in RV contractility, lusitropy and VA 
coupling translate into enhancements in clinical outcomes.
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