Article Text
Abstract
BACKGROUND--The inability to match lung perfusion to ventilation because of a reduced cardiac output on exercise contributes to reduced exercise capacity in chronic heart failure. OBJECTIVE--To quantify ventilation to perfusion matching at rest and at peak exercise in patients with chronic heart failure and relate this to haemodynamic and ventilatory variables of exercise capacity. DESIGN--Eight men in New York Heart Association class II underwent maximal bicycle ergometry with expired gas analysis. MAIN OUTCOME MEASURES--On separate days, ventilation and perfusion gamma camera imaging was performed at rest, and at 80% of previous peak exercise heart rate during bicycle ergometry. The vertical distribution of mismatch between ventilation and perfusion (V/Q) was estimated from subtracted profiles of activity (ventilation and perfusion) to derive a numerical index of global mismatch. RESULTS--Maximal mean (SD) oxygen consumption on bicycle ergometry was 16.0 (4.5) ml min-1 kg-1. There was a reduction in the global V/Q mismatch index from 23.96 (5.90) to 14.88 (7.90) units (p < 0.01) at rest and at peak exercise. Global V/Q mismatch index at peak exercise correlated negatively with maximal minute ventilation (R = -0.90, p < 0.01) and with maximal mean arterial pressure (R = -0.79, p < 0.05), although no relation was seen with maximal oxygen consumption. The reduction in global V/Q mismatch index from rest to peak exercise correlated with maximal oxygen consumption (R = 0.88, p < 0.01), and with maximal minute ventilation (R = 0.87, p < 0.01). CONCLUSIONS--During exercise in patients with chronic heart failure, there is a reduction in the global V/Q mismatch index. A lower global V/Q mismatch index at peak exercise is associated with higher maximal ventilation. The reduction in global V/Q mismatch index on exercise correlates well with maximal exercise capacity. This may imply that the inability to perfuse adequately all regions of lung on exercise and match this to ventilation is a factor determining exercise capacity in chronic heart failure.