Article Text

Download PDFPDF
Amiodarone and the thyroid: a practical guide to the management of thyroid dysfunction induced by amiodarone therapy
  1. C M Newmana,
  2. A Priceb,
  3. D W Daviesc,
  4. T A Grayb,
  5. A P Weetmana
  1. aSection of Medicine, University of Sheffield Clinical Sciences Centre, Northern General Hospital, Sheffield S5 7AU, UK, bDepartment of Clinical Chemistry, Northern General Hospital, cDepartment of Cardiology, St Mary’s Hospital, London W2 1NY, UK
  1. Dr Newman.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Amiodarone is a highly effective agent for the prophylaxis and treatment of many cardiac rhythm disturbances, ranging from paroxysmal atrial fibrillation to life threatening ventricular tachyarrhythmias.1 Unlike many other antiarrhythmic drugs, amiodarone appears to be safe in patients with significant left ventricular dysfunction,2-5 and may confer prognostic benefit in some patient subgroups.6 ,7

Amiodarone bears a remarkable structural resemblance to thyroid hormones. The free base contains 39% iodine by weight (fig 1), and chronic treatment is associated with 40-fold increases in plasma and urinary iodide levels.8 Amiodarone has complex effects on thyroid physiology in all patients taking the drug, and chronic treatment is associated with substantial changes in the results of standard thyroid function tests. Although most patients remain clinically euthyroid, a significant minority (up to 15% of patients in the UK and the USA) develop amiodarone induced hypothyroidism or thyrotoxicosis.9-12 Unfortunately, amiodarone induced thyroid dysfunction is rarely manageable by discontinuation of amiodarone alone, partly because it has an extremely long terminal half life (up to four months).13 The purposes of this review are to summarise expected and abnormal changes in thyroid function in patients taking amiodarone, and to suggest guidelines for the diagnosis and management of amiodarone induced thyroid dysfunction.

Figure 1

Structure of amiodarone and thyroid hormones.

Normal thyroid physiology: effects of amiodarone in euthyroid patients

The synthetic pathways of thyroxine (T4) and triiodothyronine (T3), along with the sites of action of antithyroid drugs, are summarised in fig 2. The expected effects of amiodarone treatment on individual biochemical parameters of thyroid function are outlined below and summarised in table 1, along with a simplified and practical account of the underlying mechanisms. A more comprehensive discussion has been published.14 The reference ranges quoted are those used at our own institution; some variation will clearly exist between laboratories, which …

View Full Text