Article Text

Download PDFPDF
Sudden death in hypertrophic cardiomyopathy: potential importance of altered autonomic control of vasculature
  1. K PRASAD,
  2. M P FRENNEAUX
  1. Department of Cardiology,
  2. University of Wales College of Medicine,
  3. Heath Park, Cardiff, UK

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Donald Teare’s original pathological description of hypertrophic cardiomyopathy (HCM) was based on eight young adults, seven of whom died suddenly.1 Almost 40 years later, the identification of individuals at risk for sudden death and its effective prevention remains the major therapeutic challenge in this disorder. While HCM is, in most series, the most common cause of sudden death in asymptomatic young adults, adolescents and athletes,2 the annual risk of sudden death for patients with HCM is not certain. Annual incidences of 1–2% in adults and 4–6% in children and adolescents have been reported from tertiary centres.2 Recent natural history studies from non-referral centres however indicate a better prognosis.3 This in part reflects referral bias as well as increased recognition of the disease. HCM has been considered a rare disease with adverse prognosis; however, emerging data from a number of studies suggest that it is a common disease (∼ 1 in 500; estimated 150 000 sufferers in the UK),4 with relatively good prognosis. The challenge therefore remains to identify the small group who are at risk of major complications particularly sudden death.

Mechanism of sudden death: structural basis

It is likely that sudden death in HCM can be initiated by several different triggers and the underlying propensity to ventricular fibrillation is on the basis of an electrophysiological substrate. Histologically, myocyte disarray is the hallmark of the disorder. The combination of myocyte disarray, myocardial fibrosis,5 and the recently reported presence of abnormal cardiac desmosome and connexin disposition, particularly in areas of severe myocyte disarray,6 set the scene for inhomogeneous electrical conduction that is important in the genesis of micro re-entry arrhythmias. Inhomogeneity of electrical conduction has been demonstrated by Saumarez, using paced electrogram fractionation.7 Survivors of out of hospital ventricular fibrillation demonstrated the greatest degree of fractionation, with individuals clinically at low …

View Full Text