Article Text
Abstract
OBJECTIVE To examine the cycle length of the junctional tachycardia often seen during successful slow pathway ablation for atrioventricular (AV) node re-entrant tachycardia, to determine whether shorter cycle lengths predict imminent atrioventricular block.
DESIGN Retrospective analysis of consecutive patients undergoing slow pathway modification. Intracardiac recordings were analysed after digital storage to determine the development of junctional tachycardia, its duration and maximum, minimum, and mean cycle length, occurrence of heart block, persistent slow pathway conduction, or later confirmed recurrence of AV node re-entrant tachycardia.
SETTING Regional cardiac centre.
PATIENTS 136 consecutive patients undergoing electrophysiological study found to have typical “slow-fast” AV node re-entrant tachycardia and subject to 137 slow pathway modification procedures.
RESULTS During successful temperature feedback controlled radiofrequency energy application, junctional tachycardia developed in 133 of 137 procedures. During ablation, 10 patients had evidence of AV block (first degree in seven patients and third degree in three), and 17 others had retrograde junctional atrial (JA) block. In these 27 patients, the junctional tachycardia was rapid, with a minimum (SD) cycle length 291 (47) ms. Conduction recovered quickly in all but two patients, one of whom required permanent pacing. Junctional tachycardia with normal AV and JA conduction in the other 111 patients was of a significantly slower minimum cycle length (537 (123) ms; p < 0.0001).
CONCLUSIONS Fast junctional tachycardia with cycle lengths under 350 ms seen during slow pathway modification is a predictor of conduction block, suggesting proximity to the compact node. Radiofrequency energy application should be terminated immediately to prevent development of AV block. An “auto cut off” facility for cycle lengths shorter than 350 ms could be built into radiofrequency ablation systems to increase safety.
- junctional tachycardia
- atrioventricular node re-entrant tachycardia
- slow pathway modification