Article Text

Download PDFPDF
Role of myocardial contrast echocardiography in the clinical evaluation of acute myocardial infarction
  1. R Senior
  1. Correspondence to:
    Dr Roxy Senior
    Northwick Park Hospital, Watford Road, Harrow, HA1 3UJ, UK;

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

The ultimate goal of treatment in acute myocardial infarction (AMI) is to salvage as much myocardium as possible with the least possible risk to the patient. In the immediate aftermath of reperfusion therapy, the clinician must determine whether the infarct related artery (IRA) is patent and if so whether successful myocardial reperfusion has been achieved. Addressing these questions expeditiously is important for subsequent treatment strategies—that is, if thrombolytic therapy has failed then the patient may be transferred for rescue coronary intervention. Furthermore, even when the patency of the IRA is restored, one has to determine whether microvascular perfusion is present. It is also important to identify the presence and extent of residual myocardial viability (MV) following AMI because subsequent revascularisation may not benefit patients with predominant myocardial necrosis, while those patients with significant MV are likely to benefit from revascularisation.


Myocardial contrast echocardiography (MCE) is a technique that utilises microbubbles which remain entirely within the intravascular space and denotes the status of microvascular perfusion within that region.1 The myocardial signal assessed visually as contrast intensity reflects capillary blood volume.2 Furthermore, following destruction of microbubbles in the myocardium during high power imaging, the rate of replenishment of the myocardium reflects microbubble or myocardial blood velocity (β). Myocardial perfusion is defined as tissue blood flow at the capillary level. The two components of tissue blood flow—capillary blood volume and blood velocity—can be assessed by MCE. The product of these two components denotes myocardial blood flow (MBF) at the tissue level.2 Thus, MCE can detect not only capillary blood volume but by virtue of its temporal resolution can also assess MBF.


The extent of myocardial necrosis after AMI is directly related to: (1) total duration of coronary occlusion; (2) the extent of myocardium subtended by the occluded artery; and (3) …

View Full Text

Linked Articles