Article Text

Download PDFPDF
RESUSCITATION
  1. Richard Vincent
  1. Correspondence to:
    Professor Richard Vincent, Postgraduate Medical School, Faculty of Health, University of Brighton, Falmer, Brighton BN1 9PH, UK;
    R.Vincent{at}brighton.ac.uk

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Resuscitation is unique in the level of collaborative attention it has received from the worldwide medical community. Based on a shared appreciation of its young but growing scientific foundation, close agreement has been achieved on defining good practice, informed, where possible, by research. This article summarises current international recommendations and the recent changes in thinking that underpin them.

COMPONENTS OF RESUSCITATION

The main components of resuscitation had been established individually by 1960—external chest compression by Kouvenhaven, expired air (“mouth-to-mouth”) ventilation by Schafer, and external defibrillation by Zoll; it was also Schafer who first recognised the value of combining these elements into a practical procedure widely suitable for treating collapsed patients.

Cardiopulmonary resuscitation (CPR) is appropriate for a variety of acute medical events where death is likely without immediate intervention. Of these, unheralded ventricular fibrillation has received the most prominent attention partly because of its frequency in patients with ischaemic heart disease, left ventricular failure, and myocardial hypertrophy, and partly because of its unique potential for successful treatment by rapid defibrillation supported by basic life support.1

Other forms of cardiac standstill—asystole and electromechanical dissociation (now called pulseless electrical activity or PEA)—may also be triggered by acute myocardial ischaemia; or they may result from a range of metabolic, toxic or traumatic insults. Asystole and PEA are considerably more resistant to treatment, and recovery is unlikely unless correction can be achieved of an underlying cause such as profound hypoxia, cardiac tamponade, hypovolaemia, hypothermia, drug overdose, electrolyte imbalance, or tension pneumothorax.

In children and younger adults, CPR is required most commonly for respiratory arrest, airway obstruction or drug overdose. Major trauma, external or internal haemorrhage, major pulmonary embolism, profound anaphylaxis, electrocution or a critical cerebrovascular event may call for resuscitation at any age.

The immediate mechanism of a condition requiring resuscitation—as well as any co-existing morbidity …

View Full Text

Linked Articles

  • Miscellanea
    BMJ Publishing Group Ltd and British Cardiovascular Society
  • Miscellanea
    BMJ Publishing Group Ltd and British Cardiovascular Society
  • Miscellanea
    BMJ Publishing Group Ltd and British Cardiovascular Society