Article Text
Statistics from Altmetric.com
Sirolimus eluting stents are associated with very low restenosis rates when deployed for single de novo native coronary lesions.1 These and other drug eluting stents are changing the face of interventional cardiology practice.2 A number of fundamental practical questions arise with the use of these novel stents, including the effects on in-stent restenosis (ISR) of overlapping stents, tandem stents, and deploying drug eluting and bare metal stents in the same vessel, as well as the ongoing issue of higher ISR rates in patients with diabetes.1 While rabbit iliac and porcine coronary models of ISR are often used for stent evaluation, these models are expensive and subject to a number of well documented limitations.3 A simple, more cost effective model of ISR would therefore be of major utility. Such a model is described here.
METHODS
All studies were approved by the University of New South Wales ethics committee. Male Sprague-Dawley rats (350–450 mg) were anaesthetised using ketamine and xylazine in the standard manner. A midline incision was made, and access to the left common carotid artery achieved using standard surgical techniques. The vessel was then isolated from the surrounding tissues, and an arteriotomy performed. A 2.0 × 7 mm BiodivYsio human coronary stent (Abbott Vascular, Illinois, USA) was then advanced into the vessel after topical application of 3–5 drops of glyceryl trinitrate (100 μg/ml). No fluoroscopic guidance was used. At a pre-marked point corresponding to the lower thoracic aorta, the stent was deployed using a single inflation at 16 atmospheres for 10 seconds. The stent balloon was then withdrawn, and post-deployment dilatation performed using a 3.0 × 15 mm coronary angioplasty balloon (Boston Scientific, …
Footnotes
↵* Also at Cardiology Department, Concord Repatriation General Hospital, University of Sydney