Article Text

Download PDFPDF
Single-beat estimation of the left ventricular end-diastolic pressure–volume relationship in patients with heart failure
  1. Ellen A ten Brinke1,
  2. Daniel Burkhoff2,
  3. Robert J Klautz3,
  4. Carsten Tschöpe4,
  5. Martin J Schalij1,
  6. Jeroen J Bax1,
  7. Ernst E van der Wall1,
  8. Robert A Dion3,
  9. Paul Steendijk1
  1. 1Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
  2. 2Department of Medicine, Columbia University, New York City, New York, USA
  3. 3Department of Cardiothoracic Surgery, Leiden University Medical Centre, Leiden, The Netherlands
  4. 4Department of Cardiology and Pneumology of the Charité-University, Berlin, Germany
  1. Correspondence to Professor Paul Steendijk, Department of Cardiology, Leiden University Medical Centre, PO Box 9600, 2300RC, Leiden, The Netherlands; p.steendijk{at}


Aims To test a method to predict the end-diastolic pressure–volume relationship (EDPVR) from a single beat in patients with heart failure.

Methods and results Patients (New York Heart Association class III–IV) scheduled for mitral annuloplasty (n=9) or ventricular restoration (n=10) and patients with normal left ventricular function undergoing coronary artery bypass grafting (n=12) were instrumented with pressure-conductance catheters to measure pressure–volume loops before and after surgery. Data obtained during vena cava occlusion provided directly measured EDPVRs. Baseline end-diastolic pressure (Pm) and volume (Vm) were used for single-beat prediction of EDPVRs. Root-mean-squared error (RMSE) between measured and predicted EDPVRs, was 2.79±0.21 mm Hg. Measured versus predicted end-diastolic volumes at pressure levels 5, 10, 15 and 20 mm Hg showed tight correlations (R2=0.69–0.97). Bland–Altman analyses indicated overestimation at 5 mm Hg (bias: pre-surgery 44 ml (95% CI 29 to 58 ml); post-surgery 35 ml (23 to 47 ml)) and underestimation at 20 mm Hg (bias: pre-surgery −57 ml (−80 to −34 ml); post-surgery −13 ml (−20 to −7.0 ml)). End-diastolic volumes were significantly different between groups and between conditions, but these differences were not dependent on the method (ie, measured versus predicted). RMSEs were not different between groups or conditions, nor dependent on Vm or Pm, indicating that EDPVR prediction was equally accurate over a wide volume range.

Conclusions Single-beat EDPVRs obtained from hearts spanning a wide range of sizes and conditions accurately predicted directly measured EDPVRs with low RMSE. Single-beat EDPVR indices correlated well with directly measured values, but systematic biases were present at low and high pressures. The single-beat method facilitates less invasive EDPVR estimation, particularly when coupled with emerging non-invasive techniques to measure pressures and volumes.

  • Diastolic function
  • end-diastolic pressure
  • volume relationship
  • heart failure
  • single-beat estimation
  • cardiac remodelling
  • diastolic dysfunction
  • haemodynamics

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • Funding Disclosures JJB received grants from Medtronic, Boston Scientific, BMS medical imaging, St. Jude Medical & GE Healthcare. MJS received grants from Biotronik, Medtronic & Boston Scientific. Other Funders: Netherlands Heart Foundation (NHS2006B86).

  • Competing interests None.

  • Ethics approval This study was conducted with the approval of the ethics committee Leiden University Medical Centre.

  • Patient consent Obtained.

  • Provenance and peer review Not commissioned; externally peer reviewed.